精英家教网 > 高中数学 > 题目详情
11.若实数x,y满足$\left\{\begin{array}{l}x-y≤1\\ x≥0\\ y≤0\end{array}\right.$,则z=x+y的最大值是1.

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式组$\left\{\begin{array}{l}x-y≤1\\ x≥0\\ y≤0\end{array}\right.$对应的平面区域如图:(阴影部分).
由z=x+y得y=-x+z,
平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,直线y=-x+z的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x-y=1}\\{y=0}\end{array}\right.$,解得A(1,0),
代入目标函数z=x+y得z=1+0=1.
即目标函数z=x+y的最大值为1.
故答案为:1.

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设函数$f(x)=\frac{sinθ}{3}{x^3}+\frac{{\sqrt{3}cosθ}}{2}{x^2}+tanθ$,其中$θ∈({\frac{π}{6}\;,\;\frac{π}{2}}]$,则f'(1)的取值范围是[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知{an}是等差数列,a1=2,a3=4,则a4+a5+a6=(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)满足$f(x)=\frac{1}{3}{x^3}-f'(1)•{x^2}-x$,则f'(1)的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数y=x3-3x,过点A(0,16)作曲线y=f(x)的切线,求此切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设关于x的不等式ax2+2|x-a|-20<0的解集为A,试探究是否存在自然数a,使得不等式x2+x-2<0与|2x-1|<x+2的解都属于A,若不存在,说明理由.若存在,请求满足条件的a的所有的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC,已知acosA=bcosB,则△ABC的形状是(  )
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}满足a1a2a3…an=2${\;}^{{n}^{2}}$(n∈N*),且对任意n∈N*都有$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<t,则t的取值范围为(  )
A.($\frac{1}{3}$,+∞)B.[$\frac{1}{3}$,+∞)C.($\frac{2}{3}$,+∞)D.[$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如果a1-2x>ax+7(a>0,且a≠1),求x的取值范围.

查看答案和解析>>

同步练习册答案