精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:对任意,不等式恒成立;命题q:存在,使得成立.

(1)p为真命题,求m的取值范围;

(2),若pq为假,pq为真,求m的取值范围.

【答案】(1) [1,2](2) (1)(1,2]

【解析】试题分析:(1)(2x2)minm23m.m23m2解得1≤m≤2;(2pq中一个是真命题,一个是假命题,解得m的取值范围为(1)(1,2]

试题解析:

 (1)∵对任意x[0,1],不等式2x2≥m23m恒成立,

(2x2)minm23m.m23m2.

解得1≤m≤2.

因此,若p为真命题时,m的取值范围是[1,2]

(2)a1,且存在x[1,1],使得max成立,

mx,命题q为真时,m≤1.

pq为假,pq为真,

pq中一个是真命题,一个是假命题.

pq假时,则解得1<m≤2

pq真时,m<1.

综上所述,m的取值范围为(1)(1,2]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点为圆的圆心, 是圆上动点,点在圆的半径上,且有点上的点,满足

(1)当在圆上运动时,求点的轨迹方程;

(2)若斜率为的直线与圆相切,与(1)中所求点的轨迹教育不同的两点 是坐标原点,且时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:

(1)由散点图知具有线性相关关系,求关于的线性回归方程;(提示数据:

(2)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度.

参考公式:回归直线的方程是,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一装有水的直三棱柱ABC-A1B1C1容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面AA1B1B水平放置,如图所示,DEFG分别在棱CACBC1B1C1A1,水面恰好过点DEFC,CD=2

(1)证明:DEAB;

()若底面ABC水平放置时,求水面的高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李,小王设计的底座形状分别为 ,经测量米, 米, 米,

(I)求的长度;

(Ⅱ)若环境标志的底座每平方米造价为元,不考虑其他因素,小李,小王谁的设计建造费用最低(请说明理由),最低造价为多少?(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 的左、右焦点分别为,上顶点为A,过点A垂直的直线交轴负半轴于点,且,若过 三点的圆恰好与直线相切.过定点的直线与椭圆交于 两点(点在点 之间).

Ⅰ)求椭圆的方程;Ⅱ)若实数满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,且满足.

(1)求点的轨迹方程所代表的曲线

(2)若点 是曲线上的动点,点在直线上,且满足 ,当点上运动时,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. 是椭圆的右顶点与上顶点,直线与椭圆相交于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)当四边形面积取最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为正实数

(1)若函数处的切线斜率为2的值

(2)求函数的单调区间

(3)若函数有两个极值点求证

查看答案和解析>>

同步练习册答案