精英家教网 > 高中数学 > 题目详情

【题目】已知函数满足为常数),且3

1)求实数的值,并求出函数的解析式;

2)当时,讨论函数的单调性,并用定义证明你的结论.

【答案】12)见解析

【解析】

1)由3得到,利用方程组思想得到函数的解析式;

2)利用定义法证明函数的单调性.

1)∵3

易得:

2函数在(0)上递减,在(+∞)上递增;

0x1x2

fx1)﹣fx2)=(2x1)﹣(2x2

又由0x1x2

2x1x210x1x20

则有fx1)﹣fx2)>0,则函数fx)在(0)为减函数,

x1x2

fx1)﹣fx2)=(2x1)﹣(2x2

又由x1x2

2x1x210x1x20

则有fx1)﹣fx2)<0,则函数fx)在(+∞)上递增.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的函数,若已知其在内只取到一个最大值和一个最小值,且当时函数取得最大值为;当,函数取得最小值为

(1)求出此函数的解析式;

(2)是否存在实数,满足不等式?若存在,求出的范围(或值),若不存在,请说明理由;

(3)若将函数的图像保持横坐标不变纵坐标变为原来的得到函数,再将函数的图像向左平移个单位得到函数,已知函数的最大值为,求满足条件的的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时,的值为2千克/年;当时,的一次函数;当时,因缺氧等原因,的值为0千克/年.

(1)当时,求关于的函数表达式.

(2)当养殖密度为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种计算机病毒是通过电子邮件进行传播的,下表是某公司前5天监测到的数据:

1

2

3

4

5

被感染的计算机数量(台)

10

20

39

81

160

则下列函数模型中,能较好地反映计算机在第天被感染的数量之间的关系的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数定义在上且满足下列两个条件:

①对任意都有;

②当时,有

(1)求,并证明函数上是奇函数;

(2)验证函数是否满足这些条件;

(3)若,试求函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率有帮助”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:

60分及以下

61~70分

71~80分

81~90分

91~100分

甲班(人数)

3

6

12

15

9

乙班(人数)

4

7

16

12

6

现规定平均成绩在80分以上(不含80分)的为优秀.

(1)由以上统计数据填写列联表,并判断是否有的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助;

(2)对甲乙两班60分及以下的同学进行定期辅导,一个月后从中抽取3人课堂检测,表示抽取到的甲班学生人数,求及至少抽到甲班1名同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且ABBP2,AD=AE=1,AEAB,且AEBP

(1)求平面PCD与平面ABPE所成的二面角的余弦值;

(2)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)讨论的单调性

(2)若存在正数,使得当,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.

(1)求直线的普通方程与圆的直角坐标方程;

(2)设动点在圆上,动线段的中点的轨迹为与直线交点为,且直角坐标系中,点的横坐标大于点的横坐标,求点的直角坐标.

查看答案和解析>>

同步练习册答案