【题目】已知函数满足(为常数),且=3.
(1)求实数的值,并求出函数的解析式;
(2)当时,讨论函数的单调性,并用定义证明你的结论.
科目:高中数学 来源: 题型:
【题目】定义在上的函数,若已知其在内只取到一个最大值和一个最小值,且当时函数取得最大值为;当,函数取得最小值为.
(1)求出此函数的解析式;
(2)是否存在实数,满足不等式?若存在,求出的范围(或值),若不存在,请说明理由;
(3)若将函数的图像保持横坐标不变纵坐标变为原来的得到函数,再将函数的图像向左平移个单位得到函数,已知函数的最大值为,求满足条件的的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时,的值为2千克/年;当时,是的一次函数;当时,因缺氧等原因,的值为0千克/年.
(1)当时,求关于的函数表达式.
(2)当养殖密度为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种计算机病毒是通过电子邮件进行传播的,下表是某公司前5天监测到的数据:
第天 | 1 | 2 | 3 | 4 | 5 |
被感染的计算机数量(台) | 10 | 20 | 39 | 81 | 160 |
则下列函数模型中,能较好地反映计算机在第天被感染的数量与之间的关系的是
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数定义在上且满足下列两个条件:
①对任意都有;
②当时,有,
(1)求,并证明函数在上是奇函数;
(2)验证函数是否满足这些条件;
(3)若,试求函数的零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率有帮助”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
60分及以下 | 61~70分 | 71~80分 | 81~90分 | 91~100分 | |
甲班(人数) | 3 | 6 | 12 | 15 | 9 |
乙班(人数) | 4 | 7 | 16 | 12 | 6 |
现规定平均成绩在80分以上(不含80分)的为优秀.
(1)由以上统计数据填写列联表,并判断是否有的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助;
(2)对甲乙两班60分及以下的同学进行定期辅导,一个月后从中抽取3人课堂检测,表示抽取到的甲班学生人数,求及至少抽到甲班1名同学的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且ABBP2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD与平面ABPE所成的二面角的余弦值;
(2)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.
(1)求直线的普通方程与圆的直角坐标方程;
(2)设动点在圆上,动线段的中点的轨迹为,与直线交点为,且直角坐标系中,点的横坐标大于点的横坐标,求点的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com