【题目】长郡中学学习兴趣小组通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下列联表:
(1)从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深层采访,求这3名学生中至少有2名要挑同桌的概率;
(2)根据以上列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?下面的临界值表仅供参考:
(参考公式: ,其中)
【答案】(1) ;(2)见解析.
【解析】试题分析:(1)由题知挑同桌的男生有3人为;不挑同桌的男生有2人为.
可得基本事件总数为10种. “这3名学生中至少有2名要挑同桌”为事件,则事件包含有7种,则 .
(2)由题得和临界值表对照可得结论.
试题解析:(1)由题知分层抽样的方法抽取容量为5的样本中,挑同桌的男生有3人,分别记为;不挑同桌的男生有2人,分别记为.
则基本事件总数为: , , , , , , , , , 共10种.
记“这3名学生中至少有2名要挑同桌”为事件,则事件包含有: , , , , , , ,共7种,则 .
(2)由题得,
有95%以上的把握认为“性别与选择座位时是否挑同桌”有关.
科目:高中数学 来源: 题型:
【题目】已知f(x)=(2x﹣3)n展开式的二项式系数和为512,且(2x﹣3)n=a0+a1(x﹣1)+a2(x﹣1)2+…+an(x﹣1)n
(1)求a2的值;
(2)求a1+a2+a3+…+an的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= +x.
(1)判断并证明f(x)的奇偶性;
(2)证明:函数f(x)在区间(1,+∞)上为增函数;
(3)求函数f(x)在区间[1,3]的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)满足f(x)= ,且f(x)=f(x+2),g(x)= ,则方程g(x)=f(x)﹣g(x)在区间[﹣3,7]上的所有零点之和为( )
A.12
B.11
C.10
D.9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C= .
(Ⅰ)若△ABC的面积等于 ,求a,b;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com