【题目】已知圆的方程为,若抛物线过点,且以圆0的切线为准线,为抛物线的焦点,点的轨迹为曲线.
(1)求曲线的方程;
(2)过点作直线交曲线与两点,关于轴对称,请问:直线是否过轴上的定点,如果不过请说明理由,如果过定点,请求出定点的坐标
【答案】(1)(2)直线过轴上的定点
【解析】分析:设直线和圆相切与点,过分别向直线m作垂线,垂足分别为,则
,由抛物线定义可知,,所以,由椭圆的定义可知,点F的轨迹为以为焦点,以4为长轴的椭圆,则曲线的方程可求;
(2)设,则直线的方程为
令y=0,,
设直线L:,
则(*) 联立直线和椭圆方程,
可得的表达式,代入(*)式得:,即可证明直线过轴上的定点.
详解:
(1)设直线和圆相切与点,过分别向直线m作垂线,垂足分别为,则
,由抛物线定义可知,,所以,由椭圆的定义可知,点F的轨迹为以为焦点,以4为长轴的椭圆,方程为.
(2)设,则直线的方程为
令y=0,,
设直线L:,
则(*) 联立直线和椭圆方程,
则,代入(*)式得:,所以直线过轴上的定点.
科目:高中数学 来源: 题型:
【题目】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:
女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 20 | 40 | 80 | 50 | 10 | |
男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 45 | 75 | 90 | 60 | 30 |
(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(2)把评分不低于70分的用户称为“评分良好用户”,能否有的把握认为“评分良好用户”与性别有关?
参考附表:
参考公式,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2﹣bx+lnx,(a,b∈R).
(1)若a=1,b=3,求函数f(x)的单调增区间;
(2)若b=0时,不等式f(x)≤0在[1,+∞)上恒成立,求实数a的取值范围;
(3)当a=1,b>时,记函数f(x)的导函数f(x)的两个零点是x1和x2(x1<x2),求证:f(x1)﹣f(x2)>﹣3ln2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高一期中考试结束后,从高一年级1000名学生中任意抽取50名学生,将这50名学生的某一科的考试成绩(满分150分)作为样本进行统计,并作出样本成绩的频率分布直方图(如图).
(1)由于工作疏忽,将成绩[130,140)的数据丢失,求此区间的人数及频率分布直方图的中位数;(结果保留两位小数)
(2)若规定考试分数不小于120分为优秀,现从样本的优秀学生中任意选出3名学生,参加学习经验交流会.设X表示参加学习经验交流会的学生分数不小于130分的学生人数,求X的分布列及期望;
(3)视样本频率为概率.由于特殊原因,有一个学生不能到学校参加考试,根据以往考试成绩,一般这名学生的成绩应在平均分左右.试根据以上数据,说明他若参加考试,可能得多少分?(每组数据以区问的中点值为代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在交通工程学中,常作如下定义:交通流量(辆/小时):单位时间内通过道路上某一横断面的车辆数;车流速度(千米/小时):单位时间内车流平均行驶过的距离;车流密度(辆/千米):单位长度道路上某一瞬间所存在的车辆数. 一般的,和满足一个线性关系,即(其中是正数),则以下说法正确的是
A. 随着车流密度增大,车流速度增大
B. 随着车流密度增大,交通流量增大
C. 随着车流密度增大,交通流量先减小,后增大
D. 随着车流密度增大,交通流量先增大,后减小
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体中,E,F分别为线段CD和上的动点,且满足,则四边形所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和( )
A. 有最小值B. 有最大值C. 为定值3D. 为定值2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com