精英家教网 > 高中数学 > 题目详情

求函数f(x)=tan2x+2atanx+5,数学公式的值域(其中a为常数).

解:∵,∴tanx≥1.令 tanx=t≥1,则函数f(x)=h(t)=t2+2at+5,对称轴为 t=-a,

当a≥-1时,-a≤1,t=1时,函数 h(t)有最小值为6+2a,原函数值域为[6+2a,+∞).
当a<-1时,-a>1,t=-a 时,函数 h(t)有最小值为 5-a2,原函数值域为[5-a2,+∞).
分析:由条件可得tanx≥1.令 tanx=t≥1,则函数f(x)=h(t)=t2+2at+5,对称轴为 t=-a,分a≥-1和a<-1两种情况,分别利用二次函数的性质求出原函数值域.
点评:本题主要考查正切函数的定义域和值域,二次函数的性质的应用,体现了分类讨论的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点坐标为F(2,0),点P的坐标为(m,0)(m≠0),设过点P的直线l交抛物线C于A,B两点,点P关于原点的对称点为点Q.
(1)当直线l的斜率为1时,求△QAB的面积关于m的函数表达式.
(2)试问在x轴上是否存在一定点T,使得TA,TB与x轴所成的锐角相等?若存在,求出定点T 的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2007年普通高等学校招生全国统一考试 文科数学(四川卷) 题型:044

已知函数f(x)=x8-4,设曲线yf(x)在点(xnf(xn))处的切线与x轴的交点为(Fn+1,u)(uN+),其中为正实数.

(Ⅰ)用Fx表示xa+1;

(Ⅱ)若a1=4,记anlg,证明数列{an}成等比数列,并求数列{xa}的通项公式;

(Ⅲ)若x1=4,bnxa=2,Tn是数列{ba}的前n项和,证明Ta<3.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省温州市八校联考高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知抛物线C的顶点在原点,焦点坐标为F(2,0),点P的坐标为(m,0)(m≠0),设过点P的直线l交抛物线C于A,B两点,点P关于原点的对称点为点Q.
(1)当直线l的斜率为1时,求△QAB的面积关于m的函数表达式.
(2)试问在x轴上是否存在一定点T,使得TA,TB与x轴所成的锐角相等?若存在,求出定点T 的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案