精英家教网 > 高中数学 > 题目详情

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是


  1. A.
    f(x1)+f(x2)>0
  2. B.
    f(x1)+f(x2)=0
  3. C.
    f(x1)+f(x2)<0
  4. D.
    f(x1)+f(x2)≤0
C
分析:先通过给定条件确定函数为关于点(2,0)成中心对称,再由图象可得答案.
解答:由函数y=f(x)满足f(-x)=-f(x+4)得函数的图象关于点(2,0)对称,
由x1+x2<4且(x1-2)(x2-2)<0不妨设x1>2,x2<2,
借助图象可得f(x1)+f(x2)的值恒小于0,
故选C.
点评:本题主要考查函数的对称性,考查数形结合的数学思想方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(x)f(x+2)=5,若f(2)=3,则f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(4-x)=-f(x),当x<2时,f(x)单调递减,如果x1+x2>4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

同步练习册答案