精英家教网 > 高中数学 > 题目详情
分别为椭圆的左、右两个焦点.
(Ⅰ) 若椭圆C上的点两点的距离之和等于4, 写出椭圆C的方程和离心率.;
(Ⅱ) 若M、N是椭圆C上关于原点对称的两点,点P是椭圆上除M、N外的任意一点, 当直线PM、PN的斜率都存在, 并记为时, 求证: ·为定值.
(1) ,
(2)  

试题分析:解:(Ⅰ) 根据已知条件: 2a="4," 即a=2, (1 分)
∴椭圆方程为. ( 2 分)
为椭圆C上一点, 则, ( 3 分)
解得, 则 椭圆C的方程为. ( 4 分)
,  ( 5 分)
则椭圆C的离心率. ( 6 分)
(Ⅱ) 设是椭圆上关于原点对称点, 设, 则,
P点坐标为(x, y), 则, ( 8 分)
 ( 9 分)
 (10  分)
 ( 11 分)
 (13  分)
点评:考查了直线与椭圆的位置关系的运用,解决的关键是利用韦达定理来求解,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


已知椭圆:的一个焦点为且过点.

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1A2P是椭圆上异于A1A2的任一点,直线PA1PA2分别交轴于点NM,若直线OT与过点MN的圆G相切,切点为T
证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,F1,F2是双曲线C:(a>0,b>0) 的左、右焦点,过F1的直线与的左、右两支分别交于A,B两点.若 | AB | : | BF2 | : | AF2 |=3 : 4 : 5,则双 曲线的离心率为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的焦点为,准线与轴的交点为,点上且,则的面积为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆的一个焦点的直线与椭圆交于两点,则 与椭圆的另一焦点构成,那么的周长是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点是双曲线上一点,双曲线两个焦点间的距离等于4,则该双曲线方程是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正三角形AOB的顶点A,B在抛物线上,O为坐标原点,则(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

与双曲线有共同的渐近线,且经过点的双曲线方程是              

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与抛物线相切倾斜角为的直线轴和轴的交点分别是A和B,那么过A、B两点的最小圆截抛物线的准线所得的弦长为
A.4                B.2            C.2            D. 

查看答案和解析>>

同步练习册答案