精英家教网 > 高中数学 > 题目详情
已知f(x)=x+cosα,则曲线f(x)在x=
π
6
处的切线斜率为(  )
分析:根据导数的运算公式求出函数f(x)在x=
π
6
处的导数,从而由几何意义求出切线的斜率.
解答:解:f′(x)=1
∴k=f′(
π
6
)
=1,
故答案为:B
点评:本题主要考查了导数的几何意义,以及利用导数研究曲线上某点切线方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知f(x)=x,g(x)是R上的偶函数,当x>0时,g(x)=lnx,则y=f(x)•g(x)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)<f′(x)对于x∈R恒成立,设F(x)=
f(x)
ex
(e为自然对数的底),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,且f(x+1)和f(x-1)都是奇函数.对x∈R有以下结论:
①f(x+2)=f(x);
②f(x+3)=f(x);
③f(x+4)=f(x);
④f(x+2)是奇函数;
⑤f(x+3)是奇函数.
其中一定成立的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x
+
1
x
+
x+
1
x
+1
g(x)=
x
+
1
x
-
x+
1
x
+1

(1)分别求f(x)、g(x)的定义域,并求f(x)•g(x)的值;(2)求f(x)的最小值并说明理由;
(3)若a=
x2+x+1
 , b=t
x
 , c=x+1
,是否存在满足下列条件的正数t,使得对于任意的正
数x,a、b、c都可以成为某个三角形三边的长?若存在,则求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且f(1)=0,f′(x)是f(x)的导函数,当x>0时总有xf′(x)<f(x)成立,则不等式f(x)>0的解集为(  )

查看答案和解析>>

同步练习册答案