【题目】已知圆,点P是直线上的一动点,过点P作圆M的切线PA,PB,切点为A,B.
(1)当切线PA的长度为时,求点P的坐标;
(2)若的外接圆为圆N,试问:当P运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由;
(3)求线段AB长度的最小值.
【答案】(1)或;(2)圆过定点,;(3)当时,AB有最小值.
【解析】
(1)设,由,计算即可求得,得出结果;
(2)因为A、P、M三点的圆N以MP为直径,所以圆的方程为,化简为,由方程恒成立可知,即可求得动圆所过的定点;
(3)由圆和圆方程作差可得直线方程,设点到直线AB的距离,则,计算化简可得结果.
(1)由题可知,圆M的半径,设,
因为PA是圆M的一条切线,所以,
所以,
解得或,
所以点P的坐标为或.
(2)设,因为,
所以经过A、P、M三点的圆N以MP为直径,
其方程为,
即,
由,
解得或,
所以圆过定点,.
(3)因为圆N方程为,
即①
又圆②
①-②得圆M方程与圆N相交弦AB所在直线方程为
.
点到直线AB的距离,
所以相交弦长
,
所以当时,AB有最小值.
科目:高中数学 来源: 题型:
【题目】如图点是半径为的砂轮边缘上的一个质点,它从初始位置(,)开始,按逆时针方向每旋转一周,.
(1)求点的纵坐标关于时间的函数关系;
(2)求点的运动周期和频率;
(3)函数的图像可由余弦曲线经过怎样的变化得到?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为 ,部分对应值如下表,的导函数的图象如图所示.
下列关于的命题:
①函数的极大值点为;
②函数在上是减函数;
③如果当时,的最大值是,那么的最大值为;
④当时,函数有个零点;
⑤函数的零点个数可能为、、、、个.
其中正确命题的个数是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设圆的圆心为,直线过点且与轴不重合,直线交圆于,两点,过点作的平行线交于点.
(1)证明为定值,并写出点的轨迹方程;
(2)设点的轨迹为曲线,直线交于,两点,过点且与直线垂直的直线与圆交于,两点,求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的导函数为,且对任意的实数都有(是自然对数的底数),且,若关于的不等式的解集中恰有两个整数,则实数的取值范围是
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com