精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy中,长为
2
+1
的线段的两端点C、D分别在x轴、y轴上滑动,
CP
=
2
PD
.记点P的轨迹为曲线E.
(I)求曲线E的方程;
(II)经过点(0,1)作直线l与曲线E相交于A、B两点,
OM
=
OA
+
OB
,当点M在曲线E上时,求
OA
OB
的值.
分析:(Ⅰ)设C、D、P的坐标,利用
CP
=
2
PD
,确定坐标之间的关系,由|CD|=
2
+1,得m2+n2=(
2
+1)2,从而可得曲线E的方程;
(II)设A(x1,y1),B(x2,y2),由
OM
=
OA
+
OB
知点M坐标为(x1+x2,y1+y2).设直线l的方程为y=kx+1,代入曲线E方程,利用韦达定理及点M在曲线E上,求得k2=2,再利用向量的数量积公式,即可求得结论.
解答:解:(Ⅰ)设C(m,0),D(0,n),P(x,y).
CP
=
2
PD
,得(x-m,y)=
2
(-x,n-y),
∴x-m=-
2
x,y=
2
(n-y),
由|CD|=
2
+1,得m2+n2=(
2
+1)2
∴(
2
+1)2x2+
(
2
+1)2
2
y2
=(
2
+1)2
整理,得曲线E的方程为x2+
y2
2
=1
(II)设A(x1,y1),B(x2,y2),
OM
=
OA
+
OB
知点M坐标为(x1+x2,y1+y2).
设直线l的方程为y=kx+1,代入曲线E方程,得(k2+2)x2+2kx-1=0,
则x1+x2=-
2k
k2+2
,x1x2=-
1
k2+2

y1+y2=k(x1+x2)+2=
4
k2+2

由点M在曲线E上,知(x1+x22+
(y1+y2)2
2
=1,
即(-
2k
k2+2
2+
8
(k2+2)2
=1
解得k2=2.
∴x1x2+y1y2=(1+k2)x1x2+k(-
2k
k2+2
)+1=-
3
4

OA
OB
=-
3
4
点评:本题考查向量知识的运用,考查轨迹方程,考查直线与曲线的位置关系,正确运用向量,确定坐标之间的关系是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足
MN
=
MF1
+
MF2
,直线l∥MN,且与C1交于A,B两点,若
OA
OB
=0
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点P(2cosx+1,2cos2x+2)和点Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在直角坐标系xOy中,射线OA在第一象限,且与x轴的正半轴成定角60°,动点P在射线OA上运动,动点Q在y轴的正半轴上运动,△POQ的面积为2
3

(1)求线段PQ中点M的轨迹C的方程;
(2)R1,R2是曲线C上的动点,R1,R2到y轴的距离之和为1,设u为R1,R2到x轴的距离之积.问:是否存在最大的常数m,使u≥m恒成立?若存在,求出这个m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知圆M的方程为x2+y2-4xcosα-2ysinα+3cos2α=0(α为参数),直线l的参数方程为
x=tcosθ
y=1+tsinθ
(t
为参数)
(I)求圆M的圆心的轨迹C的参数方程,并说明它表示什么曲线;
(II)求直线l被轨迹C截得的最大弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案