精英家教网 > 高中数学 > 题目详情
若函数y=f(x)的定义域为{x|-3≤x≤8,x≠5,值域为{y|-1≤y≤2,y≠0},则y=f(x)的图象可能是(  )
分析:根据函数的定义域和值域以及与函数图象之间的关系分别进行判断即可.
解答:解:A.当x=8时,y=0,∴A错误.
B.函数的定义域和值域都满足条件,∴B正确.
C.由函数的图象可知,在图象中出现了有2个函数值y和x对应的图象,∴C错误.
D.函数值域中有两个值不存在,∴函数的值域不满足条件,∴D错误.
故选:B.
点评:本题主要考查函数的定义以及函数三要素之间的判断,利用函数的定义是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=lnx-2ax.
(1)若函数y=f(x)的图象在点(1,f(1))处的切线为直线l,且直线l与圆(x+1)2+y2=1相切,求a的值;
(2)当a>0时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

3、若函数y=f(x)的图象关于点(h,k)对称,则函数g(x)=f(x+h)-k是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的定义域是[0,2],则函数F(x)=f(x+1)定义域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的定义域为[-2,4],则函数g(x)=f(x)+f(-x)的定义域是
[-2,2]
[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武昌区模拟)已知函数f(x)=-x3+ax2-4(a∈R).若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为
π4

(1)求a;
(2)设f(x)的导函数是f'(x),若m,n∈[-1,1],求f(m)+f'(n)的最小值;
(3)对实数m的值,讨论关于x的方程f(x)=m的解的个数.

查看答案和解析>>

同步练习册答案