精英家教网 > 高中数学 > 题目详情
已知函数.
(1)a≥-2时,求F(x)=f(x)-g(x)的单调区间;
(2)设h(x)=f(x)+g(x),且h(x)有两个极值点为,其中,求的最小值.
(1)详见解析;(2).

试题分析:本题主要考查函数的单调性、函数的最值、导数等基础知识,意在考查考生的运算求解能力、推理论证能能力以及分类讨论思想和等价转化思想的应用.第一问,先确定的解析式,求出函数的定义域,对求导,此题需讨论的判别式,来决定是否有根,利用求函数的增区间,求函数的减区间;第二问,先确定解析式,确定函数的定义域,先对函数求导,求出的两根,即,而利用韦达定理,得到,即得到代入到中,要求,则构造函数,求出的最小值即可,对求导,判断函数的单调性,求出函数的最小值即为所求.
试题解析:(1)由题意,其定义域为,则,2分
对于,有.
①当时,,∴的单调增区间为
②当时,的两根为
的单调增区间为
的单调减区间为.
综上:当时,的单调增区间为
时,的单调增区间为
的单调减区间为.   6分
(2)对,其定义域为.
求导得,
由题两根分别为,则有,   8分
,从而有
,  10分
.
时,,∴上单调递减,

.      12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的定义域;(2)判断函数的奇偶性;(3)求证:﹥0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(x+2)ln(x+1)-ax2-x(a∈R),g(x)=ln(x+1).
(1)若a=0,F(x)=f(x)-g(x),求函数F(x)的极值点及相应的极值.
(2)若对于任意x2>0,存在x1满足x1<x2且g(x1)=f(x2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,在上单调递减,并且是偶函数的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是定义域为的偶函数.当时,若关于的方程有且只有7个不同实数根,则的值是.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数为定义在R上的偶函数,且当时,则下列选项正确的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数(),则(   )
A.必是偶函数
B.当时,的图象必须关于直线对称;
C.有最大值
D.若,则在区间上是增函数;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数是定义在上的偶函数,在上是增函数,且,则使得的取值范围是_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,若存在实数满足,且,则的取值范围(   )
A.(20,32)B.(9,21)C.(8,24)D.(15,25)

查看答案和解析>>

同步练习册答案