精英家教网 > 高中数学 > 题目详情

【题目】已知函数h(x)=(m2-5m+1)xm+1为幂函数,且为奇函数.

(I)求m的值;

(II)求函数g(x)=h(x)+x的值域.

【答案】(1)m=0(2)

【解析】试题分析:(1)根据幂函数定义得m2-5m+1=1,解得m=0或5,再根据幂函数为奇函数得m=0(2)换元将函数化为一元二次函数,结合自变量取值范围与定义区间位置关系确定函数最值,得函数值域

试题解析:解:(1)∵函数h(x)=(m2-5m+1)xm+1为幂函数,∴m2-5m+1=1,.

解得m=0或5

h(x)为奇函数,∴m=0

(2)由(1)可知g(x)=x+,x∈

=t,则x=-t2,t∈[0,1],

∴f(t)=-t2+t+=- (t-1)2+1∈,故g(x)=h(x)+,x∈的值域为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】三国魏人刘徽,自撰《海岛算经》,专论测高望远。其中有一题:今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从后表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高及去表各几何? 译文如下:要测量海岛上一座山峰的高度,立两根高均为丈的标杆,前后标杆相距步,使后标杆杆脚与前标杆杆脚与山峰脚在同一直线上,从前标杆杆脚退行步到,人眼著地观测到岛峰,三点共线,从后标杆杆脚退行步到,人眼著地观测到岛峰,三点也共线,问岛峰的高度 步. (古制:=尺,===步)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的图象向右平移个单位后,图象恰好为函数的图象,则的值可以是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图. 为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的星级卖场”.

(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;

(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a>b的概率;

(3)若a=1,记乙型号电视机销售量的方差为,根据茎叶图推断b为何值时,达到最值.

(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线y=f(x)在点(1, f(1))处的切线方程为y=e(x-1)+2.

(1)求 (2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1) 若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围;

(2) 已知函数f(x)=x2+2mx+3m+4.

① 若函数f(x)有且仅有一个零点,求实数m的值;

若函数f(x)有两个零点且两个零点均比-1大,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心是坐标原点焦点在轴上离心率为又椭圆上任一点到两焦点的距离和为过右焦点轴不垂直的直线交椭圆于两点

1求椭圆的方程;

2在线段上是否存在点使得?若存在求出的取值范围;若不存在

说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】统计表明,某种型号的汽车在匀速行驶中每小时耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为: ,已知甲、乙两地相距100千米.

(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?

(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求曲线的极坐标方程,并说明其表示什么轨迹;

(2)若直线的极坐标方程为,求直线被曲线截得的弦长.

查看答案和解析>>

同步练习册答案