精英家教网 > 高中数学 > 题目详情

【题目】如下图所示,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成的角为60°.

(1)求证:AC平面BDE;

(2)求二面角F-BE-D的余弦值

(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论.

【答案】(1)见解析 (2) (3)M的坐标为(2,2,0),见解析

【解析】解:(1)DE平面ABCD,DEAC,ABCD是正方形,ACBD,又DE∩BD=D,AC平面BDE.

(2)DE平面ABCD,∴∠EBD就是BE与平面ABCD所成的角,即EBD=60°.

.由AD=3,得DE=3,AF=.

如图所示,分别以DA,DC,DE所在直线为x轴、y轴、z轴建立空间直角坐标系,则A(3,0,0),F(3,0,),E(0,0,3),B(3,3,0),C(0,3,0),

=(0,-3,),=(3,0,-2).

设平面BEF的法向量为n=(x,y,z),则

,即.

令z=,则n=(4,2,).

AC平面BDE,

=(3,-3,0)为平面BDE的一个法向量,

cos〈n,〉=.

又二面角F-BE-D为锐角,故二面角F-BE-D的余弦值为.

(3)依题意,设M(t,t,0)(0≤t≤3),则=(t-3,t,0),

AM平面BEF,·n=0,

即4(t-3)+2t=0,解得t=2.

点M的坐标为(2,2,0),此时

点M是线段BD上靠近B点的三等分点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】全国大学生机器人大赛是由共青团中央,全国学联,深圳市人民政府联合主办的赛事,是中国最具影响力的机器人项目,是全球独创的机器人竞技平台.全国大学生机器人大赛比拼的是参赛选手们的能力,坚持和态度,展现的是个人实力以及整个团队的力量.2015赛季共吸引全国240余支机器人战队踊跃报名,这些参赛战队来自全国六大赛区,150余所高等院校,其中不乏北京大学,清华大学,上海交大,中国科大,西安交大等众多国内顶尖高校,经过严格筛选,最终由111支机器人战队参与到2015年全国大学生机器人大赛的激烈角逐之中,某大学共有“机器人”兴趣团队1000个,大一、大二、大三、大四分别有100,200,300,400个,为挑选优秀团队,现用分层抽样的方法,从以上团队中抽取20个团队.

(1)应从大三抽取多少个团队?

(2)将20个团队分为甲、乙两组,每组10个团队,进行理论和实践操作考试(共150分),甲、乙两组的分数如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

从甲、乙两组中选一组强化训练,备战机器人大赛.从统计学数据看,若选择甲组,理由是什么?若选择乙组,理由是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数在区间上的图像如图所示,将该函数图像上各点的横坐标缩短到原来的一半(纵坐标不变,再向右平移个单位长度后,所得到的图像关于直线对称,则的最小值为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.

1)若的概率;

(2)若的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.命题“若x2=9,则x=±3”的否命题为“若x2=9,则x≠±3”
B.若命题P:?x0∈R, ,则命题?P:?x∈R,
C.设 是两个非零向量,则“ 是“ 夹角为钝角”的必要不充分条件
D.若命题P: ,则¬P:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程;

求垂直于直线x+3y-5="0," 且与点P(-1,0)的距离是的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,离心率为.

(1)求椭圆的标准方程;

2)过椭圆的上顶点作直线交抛物线两点, 为原点.

①求证:

②设分别与椭圆相交于两点,过原点作直线的垂线,垂足为,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点,对任意满足,且最小值是.

(1)求的解析式;

(2)设函数,其中,求在区间上的最小值

(3)若在区间上,函数的图象恒在函数的图象上方,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调递增区间;

(2)将函数的图象向左平移个单位后,所得图象对应的函数为.若关于的方程在区间上有两个不相等的实根,求实数的取值范围.

查看答案和解析>>

同步练习册答案