精英家教网 > 高中数学 > 题目详情
20.已知数列{log2an}是公差为1的等差数列,数列{an}的前n项和为Sn,则$\frac{{S}_{4}}{{S}_{2}}$的值是(  )
A.5B.4C.3D.2

分析 根据题意,求出数列{an}的通项公式,得出它的前n项和公式,计算$\frac{{S}_{4}}{{S}_{2}}$的值即可.

解答 解:∵数列{log2an}是公差为1的等差数列,
∴log2an=log2a1+(n-1),
∴log2$\frac{{a}_{n}}{{a}_{1}}$=n-1,
∴$\frac{{a}_{n}}{{a}_{1}}$=2n-1
∴an=a1•2n-1
即数列{an}是公比为2的等比数列,其前n项和为
Sn=$\frac{{a}_{1}(1{-2}^{n})}{1-2}$=(2n-1)•a1
∴$\frac{{S}_{4}}{{S}_{2}}$=$\frac{{(2}^{4}-1){•a}_{1}}{{(2}^{2}-1){•a}_{1}}$=5.
故选:A.

点评 本题考查了对数的运算性质与等差数列、等比数列的定义和通项公式以及前n项和公式的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设命题p:实数x满足x2-4ax+3a2<0,命题q:实数x满足|x-3|<1.
(1)若a=1,且p∧q为假,求实数x的取值范围;
(2)若a>0,且,¬q是¬p的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设n=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$3cosxdx,则二项式(2x+$\frac{1}{\root{3}{x}}$)n的展开式中x2项的系数为(  )
A.80B.90C.120D.160

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC中,角A,B,C的对边分别为a,b,c,若2sinB-sinC=2sin(A-C).
(1)求cosA;
(2)若a=$\sqrt{10}$,b+c=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=ax-2(a>0且a≠1)过定点(2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知Sn是数列{an}的前n项和,a1=2,Sn+1=$\frac{1}{2}$Sn+2(n∈N*),则Sn的取值范围是(  )
A.(2,4]B.[2,4)C.[2,4]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:
$\frac{tan(-150°)cos(-210°)cos420°tan(-600°)}{sin(-330°)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C:y2=2px(p>0)上的点(2,a)到焦点F的距离为3.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)设不过原点O的直线l与该抛物线相交于点P、Q,直线OP、PQ、OQ的斜率满足kOP+kPQ+kOQ=0,且△OPQ的面积为$\sqrt{5}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.海南华侨中学三亚学校高三7班拟制定奖励条例,对在学习中取得优异成绩的学生实行奖励,其中有一个奖励项目是针对学生月考成绩的高低对该学生进行奖励的.奖励公式为f(n)=k(n)(n-10),n>10(其中n是该学生月考平均成绩与重点班平均分之差,f(n)的单位为元),而$k(n)=\left\{{\begin{array}{l}{0,(n≤10)}\\{2,(10<n≤15)}\\{4,(15<n≤20)}\\{6,(n>20)}\end{array}}\right.$.现有甲、乙两位学生,甲学生月考平均分超出重点班平均分18分,而乙学生月考平均分超出重点班平均分21分.问乙所获得奖励比甲所获得奖励多几元?

查看答案和解析>>

同步练习册答案