精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的单调区间;

(2)当时,函数的图象恒不在轴的上方,求实数的取值范围.

【答案】(1)见解析;(2)

【解析】试题分析:(1)对函数求导对参数分类讨论,利用导数的正负求得函数的单调区间(2)将问题转化为对参数分类讨论分别求得函数的最大值利用函数的最大值不小于零,求得参数的取值范围.

试题解析:(1) 的定义域为

①当,,所以上单调递增;

②当,则由,,

所以上单调递增,上单调递减;

综上,, 的单调递增区间为,

, 的单调递增区间为,单调递减区间为.

(2)由题意知: 恒成立,

00,

,: .

,,

①若上单调递增,

上单调递增,

从而,不符合题意

②若, 上单调递增,

从而,

所以上单调递增, ,

从而在,不符合题意;

③若上恒成立,

上单调递减, ,

从而上单调递减, ,

所以恒成立综上所述, 的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是两个单位向量,与共面的向量满足,则的最大值为(  )

A. B. 2C. D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,函数,函数轴上的截距我,与轴最近的最高点的坐标是

(Ⅰ)求函数的解析式;

(Ⅱ)将函数的图象向左平移)个单位,再将图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数的图象,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某校新、老校区之间开车单程所需时间为只与道路畅通状况有关,对其容量为的样本进行统计,结果如图:

(分钟)

25

30

35

40

频数(次)

20

30

40

10

1)求的分布列与数学期望

2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题函数上是减函数,命题

(1)若为假命题,求实数的取值范围;

(2)若“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,点边上,

(1)求的值;

(2)若的面积是,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数
(1)求f(x)的单调区间及最大值;
(2)讨论关于x的方程|lnx|=f(x)根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是(

A.45
B.50
C.55
D.60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点( )引直线l与曲线y= 相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于( )
A.
B.-
C.
D.

查看答案和解析>>

同步练习册答案