精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|0<ax﹣1≤5},B={x|﹣ <x≤2},
(1)若a=1,求A∪B;
(2)若A∩B=且a>0,求实数a的取值集合.

【答案】
(1)

解:若a=1,则A={x|1<x≤6},

所以A∪B={x|﹣ };


(2)

解:因为a>0,所以A={x| }.

由于A∩B=,所以 ,即0<a

综上所述:实数a的取值集合


【解析】(1)若a=1,则A={x|1<x≤6},由此能求出A∪B.(2)由a>0,得A={x| }.再由A∩B=,得 ,由此能求出实数a的取值集合.
【考点精析】通过灵活运用集合的并集运算和集合的交集运算,掌握并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立;交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2log4x﹣2)(log4x﹣ ),
(1)当x∈[2,4]时,求该函数的值域;
(2)求f(x)在区间[2,t](t>2)上的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3ax+2(a∈R).
(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数有(
①函数f(x)=lg(2x﹣1)的值域为R;
②若( a>( b , 则a<b;
③已知f(x)= ,则f[f(0)]=1;
④已知f(1)<f(2)<f(3)<…<f(2016),则f(x)在[1,2016]上是增函数.
A.0个
B.1个
C.2 个
D.3个Q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知具有相关关系的两个变量之间的几组数据如下表所示:

(1)请根据上表数据在网格纸中绘制散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计当时, 的值;

(3)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取2个点,求这两个点都在直线的右下方的概率.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为(

A.3.50分钟
B.3.75分钟
C.4.00分钟
D.4.25分钟

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg 的定义域为集合A,函数g(x)= 的定义域为集合B.
(1)求集合A,B;
(2)若AB,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是定义在R上的奇函数,且x>0时,f(x)=1+( x
(1)求函数f(x)的解析式;
(2)画出函数f(x)的草图;

(3)利用图象直接写出函数f(x)的单调区间及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴上的圆过点,圆的方程为.

(1)求圆的方程;

(2)由圆上的动点向圆作两条切线分别交轴于两点,求的取值范围.

查看答案和解析>>

同步练习册答案