【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其
范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通; T∈[4,6)轻度拥堵; T∈[6,8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的部分直方图如图所示.
(1)请补全直方图,并求出轻度拥堵、中度拥堵、严重拥堵路段各有多少个?
(2)用分层抽样的方法从交通指数在[4,6),[6,8),[8,l0]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽出的6个路段中任取2个,求至少一个路段为轻度拥堵的概率.
【答案】(1)轻度拥堵、中度拥堵、严重拥堵路段各有6个,9个,3个;(2)依次抽取的三个级别路段的个数为2,3,1;(3).
【解析】
试题分析:(1)由频率分布直方图可知底高=频率,频率20=个数,由频率分布直方图很容易知道轻度拥堵 ,中度拥堵,严重拥堵的频率分别是0.3,0.45,0.15;(2)此问考察分层抽样,交通指数在的路段共18个, 抽取6个,则抽取的比值为,个段抽取的个数=路段个数;(3)考察古典概型,记选出的2个轻度拥堵路段为,选出的3个中度拥堵路段为,选出的1个严重拥堵路段为,任选两个,列举所有的基本事件的个数,同时还要列举出其中至少一个轻度拥堵的基本事件,然后利用算出概率.本题主要考察基础知识,属于基础题型.
试题解析:(1)补全直方图如图,
由直方图:个,个,个
这20个路段中,轻度拥堵,中度拥堵,严重拥堵的路段分别是6个,9个,3个.
(2)由(1)知拥堵路段共有6+9+3=18个,按分层抽样,从18个路段选出6个,每种情况为:,,,即这三段中分别抽取的个数为2,3,1.
(3)记选出的2个轻度拥堵路段为,选出的3个中度拥堵路段为,选出的1个严重拥堵路段为,则从6个路段选取2个路段的可能情况如下:
共15种情况.其中至少有一个轻度拥堵的有:共9种可能.
所选2个路段中至少一个轻度拥堵的概率是.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设中心在坐标原点,焦点在轴上的椭圆的左、右焦点分别为,右准线与轴的交点为,.
(1)已知点在椭圆上,求实数的值;
(2)已知定点.
① 若椭圆上存在点,使得,求椭圆的离心率的取值范围;
② 如图,当时,记为椭圆上的动点,直线分别与椭圆交于另一点,若且,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1 , l2 , 直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )
A.16
B.14
C.12
D.10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥S-ABCD中,底面ABCD是边长为1的正方形,SD底面ABCD,SD=2,其中分别是的中点,是上的一个动点.
(1)当点落在什么位置时,∥平面,证明你的结论;
(2)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M过C(1,-1),D(-1,1)两点,且圆心M在x+y-2=0上.
(1)求圆M的方程;
(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是
A. 至少有一个白球;都是白球 B. 至少有一个白球;至少有一个红球
C. 至少有一个白球;红、黑球各一个 D. 恰有一个白球;一个白球一个黑球
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其图象与直线y=﹣1相邻两个交点的距离为π,若f(x)>1对x∈(﹣ , )恒成立,则φ的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com