【题目】已知函数(, 为常数),函数(为自然对数的底).
(1)讨论函数的极值点的个数;
(2)若不等式对恒成立,求实数的取值范围.
【答案】(1)详见解析(2)
【解析】试题分析:(1)求得 ,分三种情况讨论,分别研究函数的单调性进而可得函数极值点的个数;(2)不等式对恒成立,等价于只需研究函数的最小值不小于零即可.
试题解析:(1) ,
由得: ,记,则,
由得,且时, , 时, ,
所以当时, 取得最大值,又,
(i)当时, 恒成立,函数无极值点;
(ii)当时, 有两个解, ,且时, , 时, , 时, ,所以函数有两个极值点;
(iii)当时,方程有一个解,且时, 时, ,所以函数有一个极值点;
(2)记 ,
由,
, ,
由,
又当, 时, ,
, 在区间上单调递增,
所以恒成立,即恒成立,
综上实数的取值范围是.
【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(可)或恒成立(即可);② 数形结合(图象在 上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法 ③ 求得的范围的.
科目:高中数学 来源: 题型:
【题目】已知{an}是公差为1的等差数列,a1 , a5 , a25成等比数列.
(1)求数列{an}的通项公式;
(2)设bn= 3+an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】东莞市某高级中学在今年4月份安装了一批空调,关于这批空调的使用年限(单位:年, )和所支出的维护费用(单位:万元)厂家提供的统计资料如下:
(1)请根据以上数据,用最小二乘法原理求出维护费用关于的线性回归方程;
(2)若规定当维护费用超过13.1万元时,该批空调必须报废,试根据(1)的结论预测该批空调使用年限的最大值.
参考公式:最小二乘估计线性回归方程中系数计算公式:
, ,其中表示样本均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克, 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com