精英家教网 > 高中数学 > 题目详情
13.有5个球,其中2个一样的黑球,红、白、蓝球各1个,现从中取出4个球排成一列,则所有不同的排法种数是(  )
A.72B.60C.120D.54

分析 分二类:(1)1个黑球,红、白、蓝球各1个,4个球全排列,(2)2个黑球,红、白、蓝球选2个,再排列4个球,去除黑球的顺序,根据分类计数原理可得.

解答 解:分类计数:(1)1个黑球,红、白、蓝球各1个,4个球全排列,共有A44=24个,
(2)2个黑球,红、白、蓝球选2个,再排列4个球,去除黑球的顺序,$\frac{1}{2}$C32•A44=36个,
根据分类计数原理,共有24+36=60,
故选:B.

点评 本题考查了分类计数原理,关键是分类,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.某数列{an}是等比数列,记其公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,q=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.{an}是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x∈R,则下列不等式恒成立的是(  )
A.lg(x2+1)≥lg2xB.2x≤$\frac{{{{(x+1)}^2}}}{2}$C.$\frac{1}{{{x^2}+1}}$<1D.x2+1>2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.圆的一条直径的两个端点是(2,0),(2,-2),则此圆的方程是(  )
A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x+2)2+(y+1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.把函数y=sin(5x-$\frac{π}{2}$)的图象向右平移$\frac{π}{4}$个单位长度,再把所得图象上各点的横坐标缩短为原来的$\frac{1}{2}$,纵坐标不变,所得图象对应的函数解析式为(  )
A.y=sin(10x-$\frac{3}{4}$π)B.y=sin(10x-$\frac{7}{2}$π)C.y=sin(10x-$\frac{3}{2}$x)D.y=sin(10x-$\frac{7}{4}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知cosα=$\frac{3}{5},cos(α-β)=\frac{12}{13}$,且0<β<α<$\frac{π}{2}$,
(1)求tan2α的值;       
(2)求cosβ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求(1+2x+x210(1-x)5展开式中各项系数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,a、b、c分别表示△ABC的三个内角A,B,C所对边的边长,A=120°,c>b,a=$\sqrt{21}$,S△ABC=$\sqrt{3}$,在AB边上一点M使BM=MC,求cos∠ACM.

查看答案和解析>>

同步练习册答案