精英家教网 > 高中数学 > 题目详情

【题目】约公元前600年,几何学家泰勒斯第一个测出了金字塔的高度.如图,金字塔是正四棱锥,泰勒斯先测量出某个金字塔的底棱长约为230米;然后,他站立在沙地上,请人不断测量他的影子,当他的影子和身高相等时,他立刻测量出该金字塔影子的顶点A与相应底棱中点B的距离约为222米.此时,影子的顶点A和底面中心O的连线恰好与相应的底棱垂直,则该金字塔的高度约为( )

A.115B.1372C.230D.2522

【答案】B

【解析】

易知,当泰勒斯的身高与影子相等时,身高与影子构成等腰直角三角形的两直角边,再根据金字塔高与影子所在的直角三角形与刚才的三角形相似,可知塔底到A的距离即为塔高.

当泰勒斯的身高与影子相等时,身高与影子构成等腰直角三角形的两直角边,

再根据金字塔高与影子所在的直角三角形与刚才的三角形相似,可知塔底到A的距离即为塔高.

所以由题意得金字塔塔高为米.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,随着一带一路倡议的推进,中国与沿线国家旅游合作越来越密切,中国到一带一路沿线国家的游客人也越来越多,如图是20132018年中国到一带一路沿线国家的游客人次情况,则下列说法正确的是(

20132018年中国到一带一路沿线国家的游客人次逐年增加

20132018年这6年中,2014年中国到一带一路沿线国家的游客人次增幅最小

20162018年这3年中,中国到一带一路沿线国家的游客人次每年的增幅基本持平

A.①②③B.②③C.①②D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱中,为棱的中点.

1)求证:平面

2)若平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,面,面.

1)求的大小;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1),求的单调区间;

(2)若当恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形,四边形是梯形,,平面平面,且

1)求证:平面;

2)求二面角的正弦值;

3)已知点在棱上,且异面直线所成角的余弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新型冠状病毒肺炎COVID-19疫情发生以来,在世界各地逐渐蔓延.在全国人民的共同努力和各级部门的严格管控下,我国的疫情已经得到了很好的控制.然而,小王同学发现,每个国家在疫情发生的初期,由于认识不足和措施不到位,感染人数都会出现快速的增长.下表是小王同学记录的某国连续8天每日新型冠状病毒感染确诊的累计人数.

日期代码x

1

2

3

4

5

6

7

8

累计确诊人数y

4

8

16

31

51

71

97

122

为了分析该国累计感染人数的变化趋势,小王同学打算从①,②中选择一种模型对变量xy的关系进行拟合,得到相应的回归方程,经过计算得,其中

1)请根据散点图,比较模型①,②的拟合效果,小王应该选择哪个模型?

2)根据(1)问选定的模型求出相应的回归方程(系数均保留一位小数);

3)由于时差,该国截止第9天新型冠状病毒感染确诊的累计人数尚未公布.小王同学认为,如果防疫形势没有得到明显改善,在数据公布之前可以根据他在(2)问求出的回归方程来对感染人数作出预测,那么估计该地区第9天新型冠状病毒感染确诊的累计人数是多少.

附:回归直线的最小二乘估计参考公式为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写算,是一种格子乘法,也是笔算乘法的一种,用以区别筹算与珠算,它由明代数学家吴敬在其撰写的《九章算法比类大全》一书中提出,是从天元式的乘法演变而来.例如计算,将被乘数89计入上行,乘数65计入右行.然后以乘数65的每位数字乘被乘数89的每位数字,将结果计入相应的格子中,最后从右下方开始按斜行加起来,满十向上斜行进一,如图,即得5785.类比此法画出的表格,若从表内(表周边数据不算在内)任取一数,则恰取到奇数的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点.

1)求实数的范围;

2)设函数的两个极值点分别为,且,求实数的取值范围.

查看答案和解析>>

同步练习册答案