精英家教网 > 高中数学 > 题目详情
设数列{an}满足an+an+1=3,且前三项之和S3=4,前四项之和S4=6,则a100=(  )
A、0B、1C、2D、3
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:根据条件求出数列是周期数列即可得到结论.
解答: 解:当n=1时,足a1+a2=3,且前三项之和S3=4,
∴a3=4-3=1,
∵前四项之和S4=6,
∴a4=6-4=2,
∵an+an+1=3,∴an+1+an+2=3,
即an+an+1=an+1+an+2
即an+2=an
则数列{an}是周期为2的周期数列,
则a100=a4=2,
故选:C.
点评:本题主要考查数列项的求解,根据数列的递推关系求出数列是周期数列是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若关于x的不等式|mx-2|<3的解集为{x|-
5
6
<x<
1
6
},则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)满足f(a+x)+f(a-x)=2b(其中a,b不同时为0),则称函数y=f(x)为“准奇函数”,称点(a,b)为函数f(x)的“中心点”.现有如下命题:
①函数f(x)=sinx+1是准奇函数;
②函数f(x)=x3是准奇函数;
③若准奇函数y=f(x)在R上的“中心点”为(a,f(a)),则函数F(x)=f(x+a)-f(a)为R上的奇函数;
④已知函数f(x)=x3-3x2+6x-2是准奇函数,则它的“中心点”为(1,2);
其中正确的命题是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AC,BD是圆O的两条互相垂直的直径,直角梯形ABEF所在平面与圆O所在平面互相垂直,其中∠FAB=∠EBA=90°,BE=2,AF=6,AC=4
2
,点N为线段EF中点.
(Ⅰ)求证:直线NO∥平面EBC;
(Ⅱ)若点M在线段AC上,且点M在平面CEF上的射影为线段NC的中点,请求出线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验,借鉴其原理,我们也可以采用计算机随机数模拟实验的方法来估计π的值:先由计算机产生1200对0~1之间的均匀随机数x,y;再统计两个数能与1构成钝角三角形三边的数对(x,y)的个数m;最后再根据统计数m来估计π的值,假如统计结果是m=940,那么可以估计π≈
 
(精确到0.001)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈(0,1),M=a+b-1,N=ab,则M.N的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,P为AB的中点,求二面角B-CA1-P的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某校的一次英语听力测试中用以下茎叶图记录了甲、乙两组各5名学生的听力成绩(单位:分)已知甲组数据的众数为15,乙组数据的中位数为17,则x、y的值分别为(  )
A、2,5B、5,5
C、5,7D、8,7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(|x-1|+|x+2|-a).
(1)当a=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥3的解集是R,求a的取值范围.

查看答案和解析>>

同步练习册答案