精英家教网 > 高中数学 > 题目详情
1.判断下列函数的奇偶性并说明理由:
(1)f(x)=$\frac{1+{a}^{2x}}{1-{a}^{2x}}$(a>0,a≠1);
(2)f(x)=$\sqrt{x-1}$+$\sqrt{1-x}$.

分析 求函数的定义域,结合函数奇偶性的定义进行判断即可.

解答 解:(1)由1-a2x≠0得a2x≠1,即x≠0,
则f(-x)=$\frac{1+{a}^{-2x}}{1-{a}^{-2x}}=\frac{{a}^{2x}+1}{{a}^{2x}-1}$=-$\frac{1+{a}^{2x}}{1-{a}^{2x}}$=-f(x),则函数f(x)是奇函数.
(2)由$\left\{\begin{array}{l}{x-1≥0}\\{1-x≥0}\end{array}\right.$得$\left\{\begin{array}{l}{x≥1}\\{x≤1}\end{array}\right.$,即x=1,故函数的定义域为{1},定义域关于原点不对称,
故函数为非奇非偶函数.

点评 本题主要考查函数奇偶性的判断,根据奇偶性的定义是解决本题的关键,注意要先判断函数的定义域是否关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.(1-$\sqrt{x}$)6(1+$\sqrt{x}$)4的展开式中x的系数是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设随机变量ξ服从正态分布N(2,9),若P(ξ>c)=P(ξ<c<-2),则c的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设全集U={x|x≤30;x∈N},集合P={能被2或3整除的自然数},用列举法表示集合∁UP为{1,5,7,11,13,17,19,23,25,29}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是公比为q的等比数列,Sn是其前n项和,且S4,S10,S7成等比数列.
(1)求证:a2 ,a8,a5 成等差数列;
(2)以a2 ,a8,a5为前三项的等差数列的第四项是不是数列{an}中的一项?若是,求这一项;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)定义域为[-1,5],则f(3x-5)的定义域为[$\frac{4}{3}$,$\frac{10}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若B={0,1,2,3,4,7,8},C={0,3,4,7,9},则满足A⊆B,A⊆C的集合A有∅,{0},{3},{4},{7},{0,3},{0,4},{0,7},{3,4},{3,7},{4,7},{0,3,4},{0,3,7},{0,4,7},{3,4,7},{0,3,4,7}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.下表是某次辩论赛中甲、乙双方辩手的成绩,如果以此来评定胜负你认为哪一方是优胜者?为什么?
  一辩二辩 三辩 四辩 
甲方 80 76 35 86 
乙方75 64 60 78 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)若x∈[$\frac{1}{2}$,4],求f(x)=(log2$\frac{x}{2}$)•(log2$\frac{x}{4}$)的最大值和最小值;
(2)若x∈[-1,2],求g(x)=($\frac{1}{2}$)x2-2x-1的值域.

查看答案和解析>>

同步练习册答案