精英家教网 > 高中数学 > 题目详情

【题目】f(x)对任意x∈R都有f(x)+f(1-x)=.

(1)求f和f的值;

(2)数列{an}满足:an=f(0)+f+…+f+f(1),数列{an}是等差数列吗?请给予证明;

(3)令bn ,证明Tn<2.

【答案】(1);(2)见解析;(3)见解析

【解析】试题分析:

(1)可得,令可得

(2)结合(1)中的结论倒序相加可得: ,则数列是等差数列;

(3) 结合(2)的结论可得,利用放缩裂项求和可得.

试题解析:

(1)因为ff,所以2f,所以f.

x,则ffff.

(2)anf(0)fff(1)

anf(1)fff(0)

两式相加2an[f(0)f(1)][f(1)f(0)]

所以an,所以an1an,故数列{an}是等差数列.

(3) bn

Tnbbb≤1

112<2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体ABCD-A1B1C1D1的棱长为2,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的三视图的面积之和最大值为( )

A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数,

)判断函数的单调性,并说明理由;

)若,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若对任意的,总存在,使得,则实数的取值范围是( )

A. B. C. D. 以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市出租车收费标准如下:起步价元,起步历程为(不超过按起步价付费);超过但不超过,超过部分按每千米元收费;超过时,超过部分按每千米元收费;另外每次乘坐需付燃油附加费.

1)写出乘车费用(元)关于路程(千米)的函数关系式;

2)若某人一次出租车费用为31.15元,求此次出租车行驶了多少千米?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为的矩形区域(如图所示),按规划要求:在矩形内的四周安排宽的绿化,绿化造价为200元/,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/.设矩形的长为.

(1)设总造价(元)表示为长度的函数;

(2)当取何值时,总造价最低,并求出最低总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】41届世界博览会于201051日至1031日,在中国上海举行,气势磅礴的中国馆——“东方之冠令人印象深刻,该馆以东方之冠,鼎盛中华,天下粮仓,富庶百姓为设计理念,代表中国文化的精神与气质.其形如冠盖,层叠出挑,制似斗拱.它有四根高33.3米的方柱,托起斗状的主体建筑,总高度为60.3米,上方的斗冠类似一个倒置的正四棱台,上底面边长是139.4米,下底面边长是69.9米,则斗冠的侧面与上底面的夹角约为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a11an13an1.

(1)证明是等比数列并求{an}的通项公式;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,右焦点为,斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为

1)求椭圆的方程;

2)求的面积.

查看答案和解析>>

同步练习册答案