精英家教网 > 高中数学 > 题目详情
抛物线y2=2px,(p>0)与直线y=x+1相切,抛物线的焦点为F,AB和CD为过抛物线焦点F的两条互相垂直的弦,中点分别为M和N.
(1)求抛物线的方程;
(2)求证:则直线MN必过定点P,并求出点P的坐标.
分析:(1)根据抛物线y2=2px,(p>0)与直线y=x+1相切,所以联立方程,组成的方程组中△=0,即可解出P的值.求出抛物线方程.
(2)欲证明直线MN必过定点P,只需求出含参数的直线MN的方程,观察是否过定点即可.设出A,B,M,N的坐标,用A,B坐标表示M,N坐标,求出直线MN方程,化为点斜式,可以发现直线必过点(3,0),所以命题得证.
解答:(1)由
y=x+1
y2=2px
得,y2-2py+2p=0
∵抛物线y2=2px,(p>0)与直线y=x+1相切,∴△=0
解得,p=2,∴抛物线的方程为y2=4x
(2)证明:设点A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4
把直线AB:y=k(x-1)代入y2=4x,得
k2x2-(2k2+4)x+k2=0,∴x3=
x1+x2
2
=1+
2
k2
,y3=k(x3-1)=
2
k

同理可得,x4=1+2k2,y4=-2k
∴kMN=
y3-y4
x3-x4
=
k
1-k2

∴直线MN为y-
2
k
=
k
1-k2
(x-1-
2
k2
),即y=
k
1-k2
(x-3),过定点P(3,0).
点评:本题主要考查了直线与抛物线相切的判断,以及直线过定点的判断.掌握它的判断方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为(  )
A、y2=
3
2
x
B、y2=9x
C、y2=
9
2
x
D、y2=3x

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=2px(p>0)上的点M(4,y)到焦点F的距离为5,O为坐标原点,则△OFM的面积为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=2px,(p>0)绕焦点依逆时针方向旋转90°所得抛物线方程为…(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)若抛物线y2=2px(p>0)的焦点到双曲线x2-y2=1的渐近线的距离为
3
2
2
,则p的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

过点A(-1,0)作抛物线y2=2px(p>0)的两条切线,切点分别为B、C,且△ABC是正三角形,则抛物线方程为
y2=
4
3
x
y2=
4
3
x

查看答案和解析>>

同步练习册答案