精英家教网 > 高中数学 > 题目详情

【题目】为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏, 从中部选择河北. 湖北,从西部选择宁夏, 从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记. 由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验. 在某普查小区,共有 50 家企事业单位,150 家个体经营户,普查情况如下表所示:

普查对象类别

顺利

不顺利

合计

企事业单位

40

10

50

个体经营户

100

50

150

合计

140

60

200

(1)写出选择 5 个国家综合试点地区采用的抽样方法;

(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;

(3)以频率作为概率, 某普查小组从该小区随机选择 1 家企事业单位,3 家个体经营户作为普查对象,入户登记顺利的对象数记为, 写出的分布列,并求的期望值.

附:

0.10

0.010

0.001

2.706

6.635

10.828

【答案】(1)见解析;(2)见解析;(3)见解析

【解析】

1)分层抽样,简单随机抽样均可;(2)利用联列表求出,然后判断即可;(3)推出可取01234.求解概率,然后求解分布列,得到期望即可.

(1)分层抽样,简单随机抽样(抽签亦可).

(2)将列联表中的数据代入公式计算得

所以,有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”.

(3)以频率作为概率,从该小区随机选择1家企事业单位作为普查对象,入户登记

顺利的概率为,随机选择1家个体经营户作为普查对象,入户登记顺利的概率为

可取0,1,2,3,4.

的分布列为:

0

1

2

3

4

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“水是生命之源”,但是据科学界统计可用淡水资源仅占地球储水总量的,全世界近人口受到水荒的威胁.某市为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨):一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图中的值;

(2)设该市有60万居民,估计全市居民中月均用水量不低于2.5吨的人数,并说明理由;

(3)若该市政府希望使的居民每月的用水不按议价收费,估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(1)求这1000件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表)

(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中以近似为样本平均数近似为样本方差

(ⅰ)利用该正态分布,求

(ⅱ)某用户从该工厂购买了100件这种产品,记表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求

附:.若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥SABC中,OBC的中点.

1)求证:ABC

2)求异面直线AB所成角的余弦值;

3)在线段上是否存在一点,使二面角的平面角的余弦值为;若存在,求的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是( )

A.先把高二年级的名学生编号:,再从编号为的学生中随机抽取名学生,其编号为,然后抽取编号为的学生,这种抽样方法是分层抽样法

B.线性回归直线不一定过样本中心

C.若两个随机变量的线性相关性越强,则相关系数的值越接近于

D.若一组数据的平均数是,则该组数据的方差也是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定直线的距离比到定点的距离大2.

(1)求动点的轨迹的方程;

(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与曲线交于两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到焦点的距离.

(1)求抛物线的方程;

(2)过点引圆的两条切线,切线与抛物线的另一交点分别为,线段中点的横坐标记为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆经过点.

(1)求椭圆的标准方程;

(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于两个相异点,证明:面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南北朝时期杰出的数学家祖冲之的儿子祖暅在数学上也有很多创造,其最著名的成就是祖暅原理:夹在两个平行平面之间的几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,现有一个圆柱体和一个长方体,它们的底面面积相等,高也相等,若长方体的底面周长为,圆柱体的体积为,根据祖暅原理,可推断圆柱体的高(

A.有最小值B.有最大值C.有最小值D.有最大值

查看答案和解析>>

同步练习册答案