精英家教网 > 高中数学 > 题目详情

【题目】某工厂为了确定工效,进行了5次试验,收集数据如下:

加工零件个数

10

20

30

40

50

加工时间(分钟)

64

69

75

82

90

经检验,这组样本数据的两个变量具有线性相关关系,那么对于加工零件的个数与加工时间这两个变量,下列判断正确的是(

A. 负相关,其回归直线经过点 B. 正相关,其回归直线经过点

C. 负相关,其回归直线经过点 D. 正相关,其回归直线经过点

【答案】D

【解析】分析:由表中数据可得的增大而增大,故成正相关关系.求得加工零件个数和加工时间的平均数得到的样本中心,即可得回归直线经过的点.

详解:由表中数据可得的增大而增大,故成正相关关系.

∴样本中心为

又回归直线过样本中心,

∴其回归直线经过点

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求的单调区间;

(Ⅱ)当时,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:其中x是仪器的月产量.

(1)将利润表示为月产量的函数;

(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆关于直线对称,圆心在第二象限,半径为.

(1)求圆的方程;

(2)直线与圆相切,且在轴、轴上的截距相等,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数上为增函数,求正实数的取值范围;

(Ⅱ)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(﹣x)=f(x),且f(x+2)=f(x)+f(2),当x∈[0,1]时,f(x)=x,那么在区间[﹣1,3]内,关于x的方程f(x)=kx+k+1(k∈R)且k≠﹣1恰有4个不同的根,则k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列说法,正确的有__________.

①与共线单位向量的坐标是

②集合与集合是相等集合;

③函数的图象与的图象恰有3个公共点;

④函数的图象是由函数的图象水平向右平移一个单位后将所得图象在轴右侧部分沿轴翻折到轴左侧替代轴左侧部分图象并保留右侧部分而得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数=Asin(A>0,>0,<)在处取得最大值2,其图象与x轴的相邻两个交点的距离为

(1)求的解析式;

(2)求函数 的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln(x+1)﹣ (a>1).
(1)讨论f(x)的单调性;
(2)设a1=1,an+1=ln(an+1),证明: <an

查看答案和解析>>

同步练习册答案