精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2 , g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=(  )
A.a2﹣2a﹣16
B.a2+2a﹣16
C.-16
D.16

【答案】C
【解析】解:取a=﹣2,则f(x)=x2+4,g(x)=﹣x2﹣8x+4.画出它们的图象,如图所示.

则H1(x)的最小值为两图象右边交点的纵坐标,H2(x)的最大值为两图象左边交点的纵坐标,

∴A=4,B=20,A﹣B=﹣16.
故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=loga(x+k)的图象是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:
①直线AM与CC1是相交直线;
②直线AM与BN是平行直线;
③直线BN与MB1是异面直线;
④直线AM与DD1是异面直线.
其中正确的结论为 (注:把你认为正确的结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,分别是椭圆的左、右焦点.

(1)若点是第一象限内椭圆上的一点, ,求点的坐标;

(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市文化部门为了了解本市市民对当地地方戏曲是否喜爱,从15-65岁的人群中随机抽样了人,得到如下的统计表和频率分布直方图.

(1)写出其中的值;

(2)若从第1,2,3,组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?

(3)在(2)抽取的6人中随机抽取2人,求抽取的2人年龄都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形的两条对角线相交于点 边所在的直线的方程为,点在边所在的直线上. 

(1)求边所在直线的方程;

(2)求矩形外接圆的方程;

(3)过点的直线被矩形的外接圆截得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= , 若对任意给定的t∈(1,+∞),都存在唯一的x∈R,满足f(f(x))=2at2+at,则正实数a的最小值是(  )
A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=x﹣m2+m+2(m∈Z)在(0,+∞)上单调递增.
(1)求函数f(x)的解析式;
(2)设g(x)=f(x)﹣ax+1,a为实常数,求g(x)在区间[﹣1,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,斜率为的直线过点,且和以为圆相切.

(1)求圆的方程;

(2)在圆上是否存在点,使得,若存在,求出所有的点的坐标;若不存在说明理由;

(3)若不过的直线与圆交于 两点,且满足 的斜率依次为等比数列,求直线的斜率.

查看答案和解析>>

同步练习册答案