精英家教网 > 高中数学 > 题目详情

【题目】已知{xn}是各项均为正数的等比数列,且x1x2=3,x3x2=2.

(1)求数列{xn}的通项公式;

(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P(x2,2),…,Pn+1(xn+1n+1)得到折线P1P2Pn+1,求由该折线与直线y=0,xx1xxn+1所围成的区域的面积Tn

【答案】(1)xn=2n-1.(2) Tn

【解析】试题分析:

(1)根据条件可求得等比数列中x11q2故可得通项公式为xn2n1.(2由题意可得梯形PnPn1Qn1Qn的上下底分别为高为xn1xn2n1故可得梯形的面积,并记为bn,则然后根据错位相减法求和即可

试题解析:

(1)设等比数列{xn}的公比为q

由题意得

消去x3q25q20

q>0

解得q2

x11

数列{xn}的通项公式为xn2n1

(2)P1P2Pn1x轴作垂线,垂足分别为Q1Q2Qn1

(1)xn1xn2n2n12n1

记梯形PnPn1Qn1Qn的面积为bn,则

∴Tn3×215×207×21(2n1)×2n3(2n1)×2n2

2Tn3×205×217×22(2n1)×2n2(2n1)×2n1

②得

Tn3×21(2222n1)(2n1)×2n1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为 的图像关于轴对称.

1)求实数 的值.

2)设则是否存在区间使得函数在区间上的值域为若存在求实数的取值范围若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面是棱的中点,

求证:平面

若二面角大于,求四棱锥体积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定点,若是直线上位于第一象限内的一点,直线轴的正半轴相交于点.试探究:的面积是否具有最小值?若有,求出点的坐标;若没有,则说明理由.若点为直线上的任意一点,情况又会怎样呢?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程是为参数)以原点为极点, 轴正半轴为极轴,并取与直角坐标系相同的单位长度,建立极坐标系,曲线的极坐标方程是.

(1)求曲线 的直角坐标方程;

(2)若分别是曲线上的任意点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验标准()》于日正式实施.车辆驾驶人员酒饮后或者醉酒后驾车血液中的酒精含量阀值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”见图,

瓶啤酒的情况

且图表示的函数模型,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:

(  )

驾驶行为类型

阀值

饮酒后驾车

醉酒后驾车

车辆驾车人员血液酒精含量阀值

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提升城市道路通行能力,可为市民提供更多出行便利.我校某研究性学习小组对成都市一中心路段(限行速度为千米/小时)的拥堵情况进行调查统计,通过数据分析发现:该路段的车流速度(/千米)与车流密度(千米/小时)之间存在如下关系:如果车流密度不超过该路段畅通无阻(车流速度为限行速度);当车流密度在时,车流速度是车流密度的一次函数;车流密度一旦达到该路段交通完全瘫痪(车流速度为零).

1)求关于的函数

2)已知车流量(单位时间内通过的车辆数)等于车流密度与车流速度的乘积,求此路段车流量的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲同学写出三个不等式:::,然后将的值告诉了乙、丙、丁三位同学,要求他们各用一句话来描述,以下是甲、乙、丙、丁四位同学的描述:

乙:为整数;

丙:成立的充分不必要条件;

丁:成立的必要不充分条件;

甲:三位同学说得都对,则的值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e为自然对数的底数.

1)求证:函数是偶函数;

2)求证:函数上单调递减;

3)求函数在闭区间上的最小值和最大值.

查看答案和解析>>

同步练习册答案