精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x3+bx2+cx+d的图象如图,则函数y=log2(x2+$\frac{2}{3}$bx+$\frac{c}{3}$)的单调递减区间是(  )
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$)C.(-2,3)D.(-∞,-2)

分析 求出原函数的导函数,由图象得到f′(-2)=f(3)=0,联立求得b,c的值,由g(x)>0求得x的范围,再由导数求出函数g(x)的减区间,则函数y=g(x)的单调递减区间可求.

解答 解:∵f(x)=x3+bx2+cx+d,
∴f′(x)=3x2+2bx+c,
由图可知f′(-2)=f(3)=0.
∴$\left\{\begin{array}{l}{12-4b+c=0}\\{27+6b+c=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=-\frac{3}{2}}\\{c=-18}\end{array}\right.$,
令g(x)=y=log2(x2+$\frac{2}{3}$bx+$\frac{c}{3}$),
则g(x)=x2-x-6,g′(x)=2x-1.
由g(x)=x2+$\frac{2b}{3}$x+$\frac{c}{3}$=x2-x-6>0,解得x<-2或x>3.
当x<$\frac{1}{2}$时,g′(x)<0,
∴g(x)=x2-x-6在(-∞,-2)上为减函数.
∴函数g(x)的单调递减区间为(-∞,-2).
故选:D.

点评 本题考查了利用导数研究函数的单调性,训练了简单的复合函数单调性的求法,关键是注意函数的定义域,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年陕西省高一下学期期末考数学试卷(解析版) 题型:选择题

已知, ,则 上的投影为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某市为鼓励居民节约用水,将实行阶梯水价,该市每户居民每月用水量划分为三级,水价实行分级递增.第一级水量:用水量不超过20吨,水价标准为1.5元/吨; 第二级水量:用水量超过20但不超过30吨,超出第一级水量的部分,水价为2.25元/吨; 第三级水量:用水量超过30吨,超出第二级水量的部分,水价为3.0元/吨.随机调查了该市1000户居民,获得了他们某月的用水量数据,整理得到如下的频率分布表:
用水量(吨)[0,10](10,20](20,30](30,40](40,50]合计
频数200400200b1001000
频率0.2a0.20.1c1
(Ⅰ)根据频率分布表中的数据,写出a,b,c的值;从该市调查的1000户居民中随机抽取一户居民,求该户居民用水量不超过30吨的概率;
(Ⅱ)从1000户居民中按用水三个等级分层抽取5户幸运者,发给大奖两份和幸运奖三份共5份,每户一份,求两份大奖获得者的都是节水型用户(用水量不超过20吨的居民)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足$\overrightarrow{MB}∥\overrightarrow{OA}$,$\overrightarrow{MA}•\overrightarrow{AB}=\overrightarrow{MB}•\overrightarrow{BA}$,求M点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设复数z1=1+i,z2=1-bi,若z1•z2为纯虚数,则实数b=(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知Rt△ABC中,C=$\frac{π}{2},A=\frac{π}{6},AB=2,则\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{BC}•\overrightarrow{CA}+\overrightarrow{CA}•\overrightarrow{AB}$=(  )
A.$-2\sqrt{3}$B.$2\sqrt{3}$C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx,g(x)=x+$\frac{a}{x}$,a∈R.
(1)设F(x)=f(x)+g(x)-x,若F(x)在[1,e]上的最小值是$\frac{3}{2}$,求实数a的值;
(2)若x≥1时,f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|2x+1|+|2x-2|.
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)若f(x)<ax+1有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a,b为正实数,且$\frac{1}{a}$+$\frac{2}{b}$=2,若a+b≥c对满足条件的a,b恒成立,则c的取值范围是(  )
A.(-∞,$\frac{3}{2}$+$\sqrt{2}$]B.(-∞,3]C.(-∞,6]D.(-∞,3+2$\sqrt{2}$]

查看答案和解析>>

同步练习册答案