精英家教网 > 高中数学 > 题目详情
9.通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:
性别与看营养说明列联表单位:名
总计
看营养说明50y80
不看营养说明x2030
总计6050z
(1)根据以上表格,写出x,y,z的值.
(2)根据以上列联表,是否有99%以上的把握认为“性别与在购买食物时看营养说明”有关?参考信息如下:
p(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+d)(c+d)(a+c)(b+d)}$.

分析 (1)利用列联表,可得x,y,z的值;
(2)根据性别与看营养说明列联表,求出K2的观测值k的值为7.486>6.635,再根据P(K2≥6.635)=0.01,该校高中学生“性别与在购买食物时看营养说明”有关.

解答 解:(1)由题意,x=60-50=10,y=50-20=30,z=80+30=110;
(2)假设H0:该校高中学生性别与在购买食物时看营养说明无关,则K2应该很小.
根据题中的列联表得k2=$\frac{110×(50×20-30×10)^{2}}{80×30×60×50}$≈7.486>6.635,
由P(K2≥6.635)=0.01,
有99%的把握认为该校高中学生“性别与在购买食物时看营养说明”有关.

点评 本题主要考查读图表、独立性检验等基础知识,考查数据处理能力和应用意识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知$0<x<\frac{π}{2}$,$sin({x-\frac{π}{6}})=\frac{1}{3}$,则$cos({x-\frac{π}{6}})$=$\frac{2\sqrt{2}}{3}$,cosx=$\frac{2\sqrt{6}-1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对应的边分别为a,b,c,且a2-(b-c)2=bc,cosAcosB=$\frac{sinA+cosC}{2}$.
(1)求角A和角B的大小;
(2)若f(x)=sin(2x+C),将函数y=f(x)的图象向右平移$\frac{π}{12}$个单位后又向上平移了2个单位,得到函数y=g(x)的图象,求函数g(x)的解析式及单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过椭圆$\frac{{y}^{2}}{4}$+x2=1的上焦点F2作一条斜率为-2的直线与椭圆交于A,B两点,O为坐标原点,则△AOB的面积为$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知ABCD是上、下底边长分别为2和6,高为$\sqrt{3}$的等腰梯形,将它沿对称轴OO1折成直二面角.
(1)证明:AC⊥BO1
(2)求二面角O-AC-O1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.曲线的切线方程与直线6x-3y+1=0相互垂直,其中x的取值为非正数且曲线的方程为f(x)=2x3+x2-x(x2-1),则曲线的切线方程为(  )
A.2x+y+1=0B.2x+y-1=0C.2x-y-1=0D.2x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.变量x、y具有线性相关关系,当x的取值为8,12,14,16时,通过观测知y的值分别为5,8,9,11,若在实际问题中,y的预报值最大是10,则x的最大取值不能超过(  )
A.16B.15C.17D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\frac{sinx}{x}$的导数为$\frac{xcosx-sinx}{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线方程为y=$\frac{4}{3}$x,则双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{5}{3}$ 或$\frac{5}{4}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案