精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
12
ax2-(2a+1)x+2lnx  (a∈R)

(Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.
分析:(Ⅰ)由函数f(x)=
1
2
ax2-(2a+1)x+2lnx  (a∈R)
,知f′(x)=ax-(2a+1)+
2
x
(x>0).由曲线y=f(x)在x=1和x=3处的切线互相平行,能求出a的值.
(Ⅱ)f′(x)=
(ax-1)(x-2)
x
(x>0).根据a的取值范围进行分类讨论能求出f(x)的单调区间.
(Ⅲ)对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),等价于在(0,2]上有f(x)max<g(x)max.由此能求出a的取值范围.
解答:解:(Ⅰ)∵函数f(x)=
1
2
ax2-(2a+1)x+2lnx  (a∈R)

f′(x)=ax-(2a+1)+
2
x
(x>0).
∵曲线y=f(x)在x=1和x=3处的切线互相平行,
∴f'(1)=f'(3),
a-(2a+1)+2=3a-(2a+1)+
2
3

解得a=
2
3

(Ⅱ)f′(x)=
(ax-1)(x-2)
x
(x>0).
①当a≤0时,x>0,ax-1<0,
在区间(0,2)上,f'(x)>0;
在区间(2,+∞)上f'(x)<0,
故f(x)的单调递增区间是(0,2),
单调递减区间是(2,+∞).
②当0<a<
1
2
时,
1
a
>2

在区间(0,2)和(
1
a
,+∞)
上,f'(x)>0;
在区间(2,
1
a
)
上f'(x)<0,
故f(x)的单调递增区间是(0,2)和(
1
a
,+∞)
,单调递减区间是(2,
1
a
)

③当a=
1
2
时,f′(x)=
(x-2)2
2x
,故f(x)的单调递增区间是(0,+∞).
④当a>
1
2
时,0<
1
a
<2
,在区间(0,
1
a
)
和(2,+∞)上,f'(x)>0;
在区间(
1
a
,2)
上f'(x)<0,
故f(x)的单调递增区间是(0,
1
a
)
和(2,+∞),单调递减区间是(
1
a
,2)

(Ⅲ)由已知,在(0,2]上有f(x)max<g(x)max
由已知,g(x)max=0,由(Ⅱ)可知,
①当a≤
1
2
时,f(x)在(0,2]上单调递增,
故f(x)max=f(2)=2a-2(2a+1)+2ln2=-2a-2+2ln2,
所以,-2a-2+2ln2<0,解得a>ln2-1,
ln2-1<a≤
1
2

②当a>
1
2
时,f(x)在(0,
1
a
]
上单调递增,
[
1
a
,2]
上单调递减,
f(x)max=f(
1
a
)=-2-
1
2a
-2lna

a>
1
2
可知lna>ln
1
2
>ln
1
e
=-1

2lna>-2,-2lna<2,
所以,-2-2lna<0,f(x)max<0,
综上所述,a>ln2-1.
点评:本题考查导数在求函数的最大值与最小值问题中的综合运用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.易错点是分类不清导致致出错,解题时要认真审题,仔细解答,注意分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案