精英家教网 > 高中数学 > 题目详情

中,角所对的边分别为,已知
(1)求的大小;(2)若的值.

(1);(2).

解析试题分析:(1)利用正弦定理可求的大小,注意的取值范围;(2)直接用余弦定理即可求的值.
试题解析:(1)由条件结合正弦定理得,
从而, ∵,∴          5分
(2),所以      10分
考点:正弦定理、余弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知m=(2cos x+2sin x,1),n=(cos x,-y),且mn.
(1)将y表示为x的函数f(x),并求f(x)的单调递增区间;
(2)已知abc分别为△ABC的三个内角ABC对应的边长,若f=3,且a=2,bc=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2sin xcos x+2cos2x+m在区间上的最大值为2.
(1)求常数m的值;
(2)在△ABC中,内角A,B,C所对的边分别为a,b,c,若f(A)=1,sin B=3sin C,△ABC的面积为,求边长a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,若acos2+ccos2b.
(1)求证:a,b,c成等差数列;
(2)若∠B=60°,b=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,已知=3.
(1)求证:tan B=3tan A
(2)若cos C,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量.
(1)若,求的值;
(2)在△ABC中,角A、B、C的对边分别是,且满足,若,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,分别为角所对的三边,已知
(Ⅰ)求的值
(Ⅱ)若,求边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°,求A、B两点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC的内角为ABC,其对边分别为abcB为锐角,向量m=(2sin B,-),n,且mn
(1)求角B的大小;
(2)如果b=2,求SABC的最大值.

查看答案和解析>>

同步练习册答案