精英家教网 > 高中数学 > 题目详情
下列命题中,真命题的个数有(  )
①函数y=2-x是单调递减函数;  
②x0是方程lnx+x=4的解,则x0∈(2,3);
?x∈R,x2-x+
1
4
≥0

④?a,b∈R,则“3a>3b”是“log3a>log3b”的充要条件.
分析:①函数y=2-x是单调递减函数;②x0是方程lnx+x=4的解,令f(x)=lnx+x-4,则f(1)=-3<0,f(2)=ln2-2<0,f(3)=ln3-1>0,f(4)=ln4>0.所以f(2)与f(3)异号.所以x0∈(2,3);③由x2-x+
1
4
=(x-
1
2
)2≥0
,知?x∈R,x2-x+
1
4
≥0
;④当a≤0,b≤0时,log3a和log3b不存在.
解答:解:①函数y=2-x是单调递减函数,故①是真命题;
②x0是方程lnx+x=4的解,令f(x)=lnx+x-4,
则f(1)=-3<0,f(2)=ln2-2<0,f(3)=ln3-1>0,f(4)=ln4>0.
所以f(2)与f(3)异号.所以x0∈(2,3),故②正确;
③∵x2-x+
1
4
=(x-
1
2
)2≥0
,∴?x∈R,x2-x+
1
4
≥0
,故③成立;
④当a≤0,b≤0时,log3a和log3b不存在,故④不成立.
故选C.
点评:本题考查命题的真假判断及其应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列命题:
①若m?β,α⊥β,则m⊥α;②若m∥α,m⊥β,则α⊥β;
③若α⊥β,α⊥γ,则β⊥γ;④若α∩γ=m,β∩γ=n,m∥n,则α∥β.
上面命题中,真命题的序号是
.       (写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中是真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中为真命题的是(    )

①底面是正多边形而且侧棱长与底面边长相等的棱锥是正多面体;②正多面体的面不是三角形就是正方形;③若长方体的各侧面都是正方形时,它就是正多面体;④正三棱锥是正四面体.

A.①②             B.③               C.②③              D.④

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中为真命题的是                                               (    )

A.平行直线的倾斜角相等              B.平行直线的斜率相等

C.互相垂直的两直线的倾斜角互补      D.互相垂直的两直线的斜率互为相反

查看答案和解析>>

科目:高中数学 来源:2015届河南周口中英文学校高二上学期第三次月考数学试卷(解析版) 题型:选择题

下列命题中为真命题的是 (   )

A.命题“若,则”的逆命题

B.命题“若,则”的否命题

C.命题“若,则”的否命题

D.命题“若,则”的逆否命题

 

查看答案和解析>>

同步练习册答案