精英家教网 > 高中数学 > 题目详情
已知点(x,y)在曲线x2+y2=
1
4
上,则z=2x2+y2+2x+
7
4
的最小值是(  )
分析:根据题意,将y2=
1
4
-x2
代入z的表达式,化简得z=(x+1)2+1.再根据y2≥0得-
1
2
≤x≤
1
2
,利用二次函数的性质加以计算,可得当x=-
1
2
时z的最小值为
5
4
解答:解:∵点(x,y)在曲线x2+y2=
1
4
上,
y2=
1
4
-x2
,代入z的表达式得
z=2x2+y2+2x+
7
4
=2x2+(
1
4
-x2)+2x+
7
4

=x2+2x+2=(x+1)2+1
∵由y2=
1
4
-x2≥0
,得-
1
2
≤x≤
1
2

1
2
≤x+1≤
3
2
,可得
1
4
≤(x+1)2
9
4

因此,z=(x+1)2+1∈[
5
4
13
4
],当x=-
1
2
时,z的最小值为
5
4

故选:B
点评:本题点P所在的曲线方程,求关于P的坐标的二元函数的最小值.着重考查了曲线方程的化简、二次函数在闭区间上的最值求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=px-
px
-2lnx、
(Ⅰ)若p=3,求曲f9想)在点(1,f(1))处的切线方程;
(Ⅱ)若p>0且函f(x)在其定义域内为增函数,求实数p的取值范围;
(Ⅲ)若函数y=f(x)在x∈(0,3)存在极值,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,已知抛物线C:y=3x2(x≥0)与直线x=a.直线x=b(其中0≤a≤b)及x轴围成的曲边梯形(阴影部分)的面积可以由公式S=b3-a3来计算,则如图2,过抛物线C:y=3x2(x≥0)上一点A(点A在y轴和直线x=2之间)的切线为l,S1是抛物线y=3x2与切线l及直线y=0所围成图形的面积,S2是抛物线y=3x2与切线l及直线x=2所围成图形的面积,求面积s1+s2的最小值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•临沂二模)已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直线y=0,x=a(0<a≤1)和曲线y=x3围成的曲边三角形的平面区域,若向区域Ω上随机投一点P,点P落在区域A内的概率是
1
64
,则a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•广州一模)如图,已知曲线C1:y=x2与曲线C2:y=-x2+2ax(a>1)交于点O,A,直线x=t(0<t≤1)与曲线C1,C2分别相交于点D,B,连结OD,DA,AB,OB.
(1)写出曲边四边形ABOD(阴影部分)的面积S与t的函数关系式S=f(t);
(2)求函数S=f(t)在区间(0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系x o y中,点p( 0,1 )在曲线c:y=x3-x2-ax+b(a,b为实数)上,已知曲c在点p处
的切线方程为y=2x+1,则a+b=
-1
-1

查看答案和解析>>

同步练习册答案