精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的左、右焦点分别为,椭圆的长轴长与焦距之比为,过的直线交于两点.

(1)当的斜率为时,求的面积;

(2)当线段的垂直平分线在轴上的截距最小时,求直线的方程.

【答案】(1)12(2)

【解析】

(1)结合椭圆性质,得到椭圆方程,联解直线与椭圆方程,结合计算面积,即可。(2)设出直线l的方程,代入椭圆方程,利用建立关于k,m的式子,计算最值,即可。

解:(1)依题意,因,又,得

所以椭圆的方程为

,当时,直线

将直线与椭圆方程联立

消去得,,解得

所以 .

(2)设直线的斜率为,由题意可知

,消去

恒成立,

设线段的中点,

设线段的中点

设线段的垂直平分线与轴的交点为,则,得.

整理得: ,等号成立时.

故当截距最小为时,,此时直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是 ( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Fibonacci数列又称黄金分割数列,因为当n趋向于无穷大时,其相邻两项中的前项与后项的比值越来越接近黄金分割数.已知Fibonacci数列的递推关系式为

1)证明:Fibonacci数列中任意相邻三项不可能成等比数列;

2Fibonacci数列{an}的偶数项依次构成一个新数列,记为{bn},证明:{bn1-H2·bn}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为,椭圆的长轴长与焦距之比为,过且斜率不为的直线交于两点.

(1)当的斜率为时,求的面积;

(2)若在轴上存在一点,使是以为顶点的等腰三角形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四色猜想是世界三大数学猜想之一,1976年数学家阿佩尔与哈肯证明,称为四色定理.其内容是:“任意一张平面地图只用四种颜色就能使具有共同边界的国家涂上不同的颜色.”用数学语言表示为“将平面任意地细分为不相重叠的区域,每一个区域总可以用四个数字之一标记,而不会使相邻的两个区域得到相同的数字.”如图,网格纸上小正方形的边长为,粗实线围城的各区域上分别标有数字的四色地图符合四色定理,区域和区域标记的数字丢失.若在该四色地图上随机取一点,则恰好取在标记为的区域的概率所有可能值中,最大的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数的图象,只需把函数的图象上所有的点(

A.向左平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)

B.向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)

C.向左平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)

D.向右平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;

(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.

参考公式: ,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的左、右焦点分别为,短轴的两端点分别为,线段的中点分别为,且四边形是面积为8的矩形.

(Ⅰ)求椭圆的方程;

(Ⅱ)过作直线交椭圆于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,为棱的中点.

求证:(1)平面

(2)平面平面.

查看答案和解析>>

同步练习册答案