精英家教网 > 高中数学 > 题目详情
15.已知集合A={x|tanx>$\sqrt{3}$},集合B={x|x2-4<0}.则A∩B=(  )
A.(-2,-$\frac{π}{2}$)∪($\frac{π}{3}$,$\frac{π}{2}$)B.(-2,-$\frac{π}{2}$)C.($\frac{π}{3}$,$\frac{π}{2}$)D.[-2,-$\frac{π}{2}$)∪[$\frac{π}{3}$,$\frac{π}{2}$)

分析 先分别求出集体合A和B,由此能求出A∩B.

解答 解:∵集合A={x|tanx>$\sqrt{3}$}={x|k$π+\frac{π}{3}$<x<k$π+\frac{π}{2}$,k∈Z},
集合B={x|x2-4<0}{x|-2<x<2}.
∴A∩B={x|-2<x<-$\frac{π}{2}$或$\frac{π}{3},\frac{π}{2}$}=(-2,-$\frac{π}{2}$)∪($\frac{π}{3}$,$\frac{π}{2}$).
故选:A.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+2ax+2定义在[-5,5]上.
(1)当a=-1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使f(x)在[-5,5]上具有单调性;  
(3)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A、B为抛物线y2=2px(p>0)上不同的两个动点(A、B都不与原点重合),且OA⊥OB,OM⊥AB于M.
(Ⅰ)当点M的轨迹经过点(2,1)时,求p的值;
(Ⅱ)在(Ⅰ)的条件下,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1的一条弦被点(4,2)平分,则该弦所在的直线方程是(  )
A.x-2y=0B.2x-3y-2=0C.x+2y-8=0D.x-2y-8=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=sin(2x+φ)为R上的偶函数,则φ的值可以是(  )
A.$-\frac{π}{4}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tanα=2,计算:
(1)$\frac{sin(α-3π)+cos(π+α)}{sin(-α)-cos(π+α)}$;
(2)cos2α-2sinαcosα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合  A={a-2,2a2+5a,12},且-3∈A
(1)求a.
(2)写出集合A的所有子集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若$α∈({-\frac{π}{2},0})$,则P(tanα,cosα)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数$f(x)=sin(2x-\frac{π}{3})$的图象向左平移$\frac{π}{3}$个单位,再将横坐标伸长到原来的2倍后,所得函数为g(x),则g(π)=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案