精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=xn的图象过点(3,$\sqrt{3}$),则n=$\frac{1}{2}$.

分析 根据幂函数f(x)的图象过点(3,$\sqrt{3}$),代入点的坐标,求出n的值即可.

解答 解:∵函数f(x)=xn的图象过点(3,$\sqrt{3}$),
∴3n=$\sqrt{3}$,
解得n=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了利用函数图象上的点的坐标求函数解析式的问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若某空间几何体的三视图如图所示,根据图中数据,可得该几何体的外接球的体积是(  )
A.$\frac{{\sqrt{2}}}{3}$πB.$\frac{4}{3}$πC.$\sqrt{6}$πD.8$\sqrt{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=asinx-btanx+4cos$\frac{π}{3}$,且f(-1)=1,则f(1)=(  )
A.3B.-3C.0D.4$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知角α的终边落在直线y=-2x上,则tanα的值为(  )
A.2B.-2C.±2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(2,k),$\overrightarrow{b}$=(1,1),满足$\overrightarrow{b}$⊥($\overrightarrow{a}$-3$\overrightarrow{b}$).
(Ⅰ)求k的值;
(Ⅱ)求向量$\overrightarrow{a}$与向量$\overrightarrow{b}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=$\frac{1}{3}$x3+ax2+bx-$\frac{2}{3}$在x=2处的切线方程为x+y-2=0.
(Ⅰ)求实数a,b的值;
(Ⅱ)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.${∫}_{0}^{\frac{π}{4}}$$\frac{cos2x}{cosx+sinx}$dx的值等于$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线E:y2=2px(p>0)的焦点为F,抛物线上存在一点P到其焦点的距离为$\frac{3}{2}$,且点P在圆x2+y2=$\frac{9}{4}$上.
(1)求抛物线E的方程;
(2)过点T(m,0)作两条互相垂直的直线分别交抛物线E于A、B、C、D四点,且M、N分别为线段AB、CD的中点,求△TMN的面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,且2Sn=an+1-2n+1+1(n∈N*),a1=1.
(1)求证:数列{$\frac{{a}_{n}}{{2}^{n}}$+1}为等比数列,并求an
(2)设数列{bn}满足bn(3n-an)=$\frac{n+2}{n(n+1)}$,数列{bn}的前n项和为Tn,求证;Tn<1.

查看答案和解析>>

同步练习册答案