精英家教网 > 高中数学 > 题目详情
15.以下命题正确命题的个数为(  )
(1)化极坐标方程ρ2cosθ-ρ=0为直角坐标方程为x2+y2=0或y=1
(2)集合A={x||x+1|<1},B={x|y=-$\sqrt{2x-{x^2}}$},则A⊆B
(3)若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b),则$\underset{lim}{h→0}\frac{f({x}_{0}+h)-f({x}_{0}-h)}{h}$的值为2f′(x0)(4)若关于x的不等式|ax-2|+|ax-a|≥2(其中a>0)的解集为R,则实数a≥4(5)将点P(-2,2)变换为P′(-6,1)的伸缩变换公式为$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}$.
A.1B.2C.3D.4

分析 由极坐标方程ρ2cosθ-ρ=0可得ρ=0或ρcosθ-1=0,化为直角坐标方程,可判断(1);
解绝对值不等式求出A,求函数y=-$\sqrt{2x-{x^2}}$的定义域,求出B,可判断(2);
根据导数的定义,求出$\lim_{h→0}\frac{f({x}_{0}+h)-f({x}_{0}-h)}{h}$的值,可判断(3);
求出使不等式|ax-2|+|ax-a|≥2恒成立的a的范围,可判断(4); 
根据伸缩变换公式,可判断(5).

解答 解:由极坐标方程ρ2cosθ-ρ=0可得ρ=0或ρcosθ-1=0,即x2+y2=0或x=1,故(1)错误;
解|x+1|<1得:A=(-2,0),由2x-x2≥0得,B=[0,2],则A?B,故(2)错误;
若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b),
则$\lim_{h→0}\frac{f({x}_{0}+h)-f({x}_{0})}{h}$=$\lim_{h→0}\frac{f({x}_{0})-f({x}_{0}-h)}{h}$=f′(x0),
故$\lim_{h→0}\frac{f({x}_{0}+h)-f({x}_{0}-h)}{h}$=2f′(x0),故(3)正确;
|ax-2|+|ax-a|=|ax-2|+|a-ax|≥|ax-2+a-ax|=|a-2|,
若不等式|ax-2|+|ax-a|≥2(其中a>0)的解集为R,则|a-2|≥2,
则a≥4或a≤0(舍去),故(4)正确;
将点P(-2,2)变换为P′(-6,1)的伸缩变换公式为$\left\{\begin{array}{l}x′=3x\\ y′=\frac{1}{2}y\end{array}\right.$,故(5)错误.
故正确的命题个数为2个,
故选:B

点评 本题考查的知识点是命题的真假判断与应用,此类题型往往综合较多的其它知识点,综合性强,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某户外用品专卖店准备在“五一”期间举行促销活动,根据市场调查,该店决定从2种不同品牌的冲锋衣,2种不同品牌的登山鞋和3种不同品牌的羽绒服中,随机选出4种不同的商品进行促销(注:同种类但不同品牌的商品也视为不同的商品),该店对选出的商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有三次抽奖的机会,若中奖,则每次中奖都获得m元奖金.假设顾客每次抽奖时获奖与否的概率都是$\frac{1}{2}$,设顾客在三次抽奖中所获得的奖金总额(单位:元)为随机变量X.
(1)求随机选出的4种商品中,冲锋衣,登山鞋,羽绒服都至少有一种的概率;
(2)请写出X的分布列,并求X的数学期望;
(3)该店若想采用此促销方案获利,则每次中奖奖金要低于多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.不等式$\frac{1+|x|}{|x|-1}$≥3的解集是(  )
A.{x|-2≤x≤2}B.{x|-2≤x<-1或-1<x<1或1<x≤2}
C.{x|x≤2且x≠±1}D.{x|-2≤x<-1或1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.化简:
(1)$\sqrt{1-si{n}^{2}α}$;($\frac{π}{2}$<α<π)
(2)$\sqrt{1-sinφ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知sinα-cosα=$\sqrt{2}$,则sinα•cosα=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设随机变量X满足两点分布,P(X=1)=p,P(X=0)=q,其中p+q=1,则D(X)为(  )
A.pB.qC.pqD.p+q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.(普通中学做)直线y=3x+2与曲线y=ax3+1相切,则实数a=(  )
A.4B.3C.2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若$\underset{\underbrace{33…3}}{20}$Ω$\underset{\underbrace{88…8}}{20}$能被7整除,求中间Ω的数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集是空集,求实数a的取值范围.

查看答案和解析>>

同步练习册答案