精英家教网 > 高中数学 > 题目详情
11.设等差数列{an}的前项和为Sn,且a2=2,S5=15,数列{bn}的前项和为Tn,且b1=$\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*
(Ⅰ)求数列{an}通项公式an及前项和Sn
(Ⅱ) 求数列{bn}通项公式bn及前项和Tn

分析 (Ⅰ)由等差数列的性质可知:S5=5a3=15,则a3=3,d=a3-a2=1,a1=1,根据等差数列通项公式及前n项和公式即可求得an及Sn
(Ⅱ)由题意可知:$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{1}{2}$•$\frac{n+1}{n}$,采用累乘法即可求得数列{bn}通项公式bn=$\frac{n}{{2}^{n}}$,利用错位相减法求得数列{bn}前项和Tn

解答 解:(Ⅰ)由等差数列{an}的公差为d,由等差数列的性质可知:S5=5a3=15,则a3=3,
d=a3-a2=1,
首项a1=1,
∴数列{an}通项公式an=1+(n-1)=n,
前n项和Sn=$\frac{n(n+1)}{2}$=$\frac{{n}^{2}+n}{2}$;
(Ⅱ)2nbn+1=(n+1)bn(n∈N*),
则$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{1}{2}$•$\frac{n+1}{n}$,
∴$\frac{{b}_{2}}{{b}_{1}}$=$\frac{1}{2}$•$\frac{2}{1}$,$\frac{{b}_{3}}{{b}_{2}}$=$\frac{1}{2}$•$\frac{3}{2}$,$\frac{{b}_{4}}{{b}_{3}}$=$\frac{1}{2}$×$\frac{4}{3}$,…$\frac{{b}_{n}}{{b}_{n-1}}$=$\frac{1}{2}$•$\frac{n}{n-1}$,
∴当n≥2时,$\frac{{b}_{n}}{{b}_{1}}$=($\frac{1}{2}$)n-1,即bn=$\frac{n}{{2}^{n}}$,
当n=1时,b1=$\frac{1}{2}$,符合上式,
∴数列{bn}通项公式bn=$\frac{n}{{2}^{n}}$,
∴Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{4}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
两式相减得:$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$,
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$,
=1-$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$,
=1-$\frac{n+2}{{2}^{n+1}}$,
Tn=2-$\frac{n+2}{{2}^{n}}$,
数列{bn}前项和Tn=2-$\frac{n+2}{{2}^{n}}$.

点评 本题考查等差数列通项公式及前n项和,考查累乘法及“错位相减法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x|x-a|+b,a,b∈R若对于给定的实数a(a≥2),存在实数b,?x1,x2∈[1,2],都有不等式|f(x1)-f(x2)|≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在命题“方程x2=4的解为x=±2”中使用的联结词是(  )
A.B.C.D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,长方体ABCD-A1B1C1D1中,AB=3,BC=4,CC1=5,则沿着长方体表面从A到C1的最短路线长为$\sqrt{74}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)与g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3-2-x,则f(2)+g(2)=(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(Ⅰ)解不等式$\frac{{x}^{2}-x-6}{x-1}$>0
(Ⅱ)设a>0,b>0,c>0,且a+b+c=1,求证($\frac{1}{a}$-1)($\frac{1}{b}$-1)($\frac{1}{c}$-1)≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=-x2-4mx+1在[2,+∞)上是减函数,则m的取值范围是(  )
A.[-1,+∞)B.(-∞,1)C.(-∞,-1]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C的圆心在直线x-2y=0上.
(1)若圆C与y轴的正半轴相切,且该圆截x轴所得弦的长为2$\sqrt{3}$,求圆C的标准方程;
(2)在(1)的条件下,直线l:y=-2x+b与圆C交于两点A,B,若以AB为直径的圆过坐标原点O,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.
ABCDEFG
305101052030
(1)将硬币连续投掷三次,现约定:若筹码停在A或B或C或D处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.
(2)设甲、乙两人各有100个积分,筹码停在D处,现约定:
①投掷一次硬币,甲付给乙10个积分;乙付给甲的积分数是,按照上述游戏规则筹码所在表中字母A-G下方所对应的数目;
②每次游戏筹码都连续走三步,之后重新回到起始位置D处.
你认为该规定对甲、乙二人哪一个有利,请说明理由.

查看答案和解析>>

同步练习册答案