【题目】新学年伊始,某中学学生社团开始招新,某高一新生对“海济公益社”、“理科学社”、“高音低调乐社”很感兴趣,假设她能被这三个社团接受的概率分别为 , , .
(1)求此新生被两个社团接受的概率;
(2)设此新生最终参加的社团数为ξ,求ξ的分布列和数学期望.
【答案】
(1)解:设事件A表示“此新生能被海济公益社接受”,事件B表示“此新生能理科学社接受”,
事件C表示“此新生能被高音低调乐社接受”,
则P(A)= ,P(B)= ,P(C)= ,
∴此新生被两个社团接受的概率为:
P( +A C+ )= + + = .
(2)解:由题意得ξ的可能取值为0,1,2,3,
P(ξ=0)= = ,
P(ξ=1)= = ,
P(ξ=2)= + + = .
P(ξ=3)= = ,
∴ξ的分布列为:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
E(X)= = .
【解析】(1)设事件A表示“此新生能被海济公益社接受”,事件B表示“此新生能理科学社接受”,事件C表示“此新生能被高音低调乐社接受”,此新生被两个社团接受的概率为:P( +A C+ ),由此能求出结果.(2)由题意得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和数学期望.
【考点精析】关于本题考查的离散型随机变量及其分布列,需要了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+ ,g(x)=2x+a,若x1∈[ ,3],x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是( )
A.a≤1
B.a≥1
C.a≤0
D.a≥0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线过点P且与x轴、y轴的正半轴分别交于A,B两点,O为坐标原点,是否存在这样的直线满足下列条件:①△AOB的周长为12;②△AOB的面积为6.若存在,求出方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限接近圆的面积,并创立了“割圆术”,利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,如圆是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据:sin15°=0.2588,sin7.50=0.1305)
A.12
B.24
C.48
D.96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)判断函数的奇偶性,并给出证明;
(2)解不等式: ;
(3)若函数在上单调递减,比较f(2)+f(4)+…+f(2n)与2n(n∈N*)的大小关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣lnx;g(x)= .
(1)讨论函数f(x)的单调性;
(2)求证:若a=e(e是自然常数),当x∈[1,e]时,f(x)≥e﹣g(x)恒成立;
(3)若h(x)=x2[1+g(x)],当a>1时,对于x1∈[1,e],x0∈[1,e],使f(x1)=h(x0),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大衍数列,来源于中国古代著作《乾坤谱》中对易传“大衍之数五十”的推论.其前10项为:0、2、4、8、12、18、24、32、40、50.通项公式: ,如果把这个数列{an}排成如图形状,并记A(m,n)表示第m行中从左向右第n个数,则A(10,4)的值为( )
A.1200
B.1280
C.3528
D.3612
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点O为坐标原点,椭圆E: (a≥b>0)的右顶点为A,上顶点为B,过点O且斜率为 的直线与直线AB相交M,且 .
(Ⅰ)求椭圆E的离心率e;
(Ⅱ)PQ是圆C:(x﹣2)2+(y﹣1)2=5的一条直径,若椭圆E经过P,Q两点,求椭圆E的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com