精英家教网 > 高中数学 > 题目详情
11.已知x>0,y>0,且$\frac{1}{x}+\frac{2}{y}$=1,若2x+y>t2+2t恒成立,则实数t的取值范围是(  )
A.[-4,2]B.(-4,2)C.(0,2)D.(0,4)

分析 利用“1”的代换化简x+2y转化为(x+2y)($\frac{1}{x}+\frac{2}{y}$)展开后利用基本不等式求得其最小值,然后根据x+2y>m2+2m求得m2+2m<8,进而求得m的范围.

解答 解:∵$\frac{1}{x}+\frac{2}{y}$=1,∴x+2y=(x+2y)($\frac{1}{x}+\frac{2}{y}$)=4+$\frac{4y}{x}$+$\frac{x}{y}$≥4+2$\sqrt{4}$=8
∵x+2y>t2+2t恒成立,
∴t2+2t<8,求得-4<t<2
故选:B.

点评 本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知点A(1,0),B(6,2)和向量$\overrightarrow{a}$=(2,λ),若$\overrightarrow{a}$∥$\overrightarrow{AB}$,则实数λ的值为(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{7}{2}$D.-$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定义在R上的奇函数f(x)满足当x≥0时,f(x)=log2(x+2)+(a-1)x+b(a,b为常数),若f(2)=-1,则f(-6)的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知tanx=$\frac{1}{2}$,则sin2($\frac{π}{4}$+x)=(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=(a-2)x-ax3在区间[-1,1]上的最大值为2,则a的取值范围是(  )
A.[2,10]B.[-1,8]C.[-2,2]D.[0,9]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图点P在平面区域$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-2y+1≤0}\\{x+y-2≤0}\end{array}\right.$上,点Q在曲线x2+(y+$\frac{3}{2}$)2=1上,那么|PQ|的最小值为(  )
A.$\sqrt{5}$-1B.$\frac{4}{\sqrt{5}}$-1C.2$\sqrt{2}$-1D.$\frac{\sqrt{13}}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线C:y=xlnx在点M(e,e)处的切线方程为(  )
A.y=x-eB.y=x+eC.y=2x-eD.y=2x+e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知sin200°=a,则tan160°等于(  )
A.-$\frac{a}{\sqrt{1-{a}^{2}}}$B.$\frac{a}{\sqrt{1-{a}^{2}}}$C.-$\frac{\sqrt{1-{a}^{2}}}{a}$D.$\frac{\sqrt{1-{a}^{2}}}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列结论:①(cosx)′=sinx;②(sin$\frac{π}{3}$)′=cos$\frac{π}{3}$;③若y=$\frac{1}{{x}^{2}}$,则y′|x=3=-$\frac{2}{27}$;④(-$\frac{1}{\sqrt{x}}$)′=$\frac{1}{2x\sqrt{x}}$.其中正确的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案