精英家教网 > 高中数学 > 题目详情

【题目】设函数的定义域均为,且是奇函数,是偶函数,,其中为自然对数的底数.

(1)求的解析式,并证明:当时,

(2)若关于的不等式上恒成立,求实数的取值范围.

【答案】(1)证明见解析;(2).

【解析】试题分析:(1)根据奇函数,偶函数即可得到联立,即可解出时,容易得出,而由基本不等式即可求出;(2)代入原不等式便可得出,可令得到容易得出进而得出根据基本不等式即可求出这样即可得出的取值范围.

试题解析:(1).

证明:当时,,故

又由基本不等式,有,即-

(2)由条件知m(ex-e-x+1)≤e-x-1在(0,+∞)上恒成立.

令t=ex(x>0),则t>1,

因为在R上为增函数,所以

所以m≤-=-对任意t>1成立.

因为,

所以=-

当且仅当t=2,即x=ln2时等号成立.

因此实数m的取值范围是 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四边形ABCD中,已知AB=9,BC=6, =2
(1)若四边形ABCD是矩形,求 的值;
(2)若四边形ABCD是平行四边形,且 =6,求 夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为,点坐标原点.

(1)求椭圆的标准方程;

(2)过椭圆的左焦点任作一条不垂直于坐标轴的直线,交椭圆两点,记弦的中点为,过的垂线交直线于点,证明:点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 分别为直角三角形的直角边和斜边的中点,沿折起到的位置,连结 的中点.

1)求证: 平面;(2)求证:平面平面

3)求证: 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角ABC所对的边分别为a,b,c,已知

(1)求角B的大小;

(2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}满足a1=1,an+1=2an+1,b1=4,bn﹣bn1=an+1(n≥2).
(1)求证:数列{an+1}是等比数列;
(2)求数列{an},{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.

(1)求渔船甲的速度;
(2)求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形中, ,将沿折起,使平面平面,构成四面体,则在四面体中,下列说法不正确的是( ).

A. 直线直线 B. 直线直线

C. 直线平面 D. 平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)的最小正周期和单调递增区间;

(Ⅱ)已知abc是△ABC三边长,且fC)=2,△ABC的面积S=c=7.求角Cab的值.

查看答案和解析>>

同步练习册答案