精英家教网 > 高中数学 > 题目详情
7.在△ABC中,角A,B,C所对应的边分别为a,b,c,且a2-(b-c)2=bc,cosAcosB=$\frac{sinA+cosC}{2}$.
(1)求角A和角B的大小;
(2)若f(x)=sin(2x+C),将函数y=f(x)的图象向右平移$\frac{π}{12}$个单位后又向上平移了2个单位,得到函数y=g(x)的图象,求函数g(x)的解析式及单调递减区间.

分析 (1)利用余弦定理求得cosA的值,可得A的值,利用两角和差的余弦公式化简cosAcosB=$\frac{sinA+cosC}{2}$,可得B的值.
(2)利用函数y=Acos(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的单调性求得函数g(x)的单调递减区间.

解答 解:(1)△ABC中,∵a2-(b-c)2=bc,∴a2-b2-c2=-bc,
∴cosA=$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=$\frac{1}{2}$,∴A=$\frac{π}{3}$.
∵cosAcosB=$\frac{sinA+cosC}{2}$,∴2cosAcosB=sinA+cosC,∴cosB=$\frac{\sqrt{3}}{2}$+cos($\frac{2π}{3}$-B),
即  cosB=$\frac{\sqrt{3}}{2}$+cos$\frac{2π}{3}$•cosB+sin$\frac{2π}{3}$sinB,即$\sqrt{3}$cosB=1+sinB,∴B=$\frac{π}{6}$.
综上可得,$A=\frac{π}{3},\;\;B=\frac{π}{6}$.
(2)∵C=$\frac{2π}{3}$-B=$\frac{π}{2}$,∴f(x)=sin(2x+$\frac{π}{2}$)=cos2x,∴$g(x)=cos(2x-\frac{π}{6})+2$,
令2kπ≤2x-$\frac{π}{6}$≤2kπ+π,求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,
故函数g(x)的单调减区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.

点评 本题主要考查余弦定理,两角和差的余弦公式,函数y=Acos(ωx+φ)的图象变换规律,余弦函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.($\frac{4}{x}$)′=-$\frac{4}{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=x2和g(x)=lnx,作一条平行于y轴的直线,交f(x),g(x)图象于A,B两点,则|AB|的最小值为$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列四个图中,函数y=$\frac{ln|x+1|}{x+1}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列3个命题:
命题p:若a2≥20,则方程x2+y2+ax+5=0表示一个圆.
命题q:?m∈(-∞,0),方程0.1x+msinx=0总有实数解.
命题r:?m∈(1,3),msinx+mcosx=3$\sqrt{2}$.
那么,下列命题为真命题的是(  )
A.p∨rB.p∧(¬q)C.(¬q)∧(¬r)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)是R上的可导函数,且f′(x)≥-f(x),f(0)=1,f(2)=$\frac{1}{{e}^{2}}$.则f(1)的值为$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数g(x)=$\frac{p+x}{x-2}$,且函数f(x)=logag(x)(a>0,a≠1)奇函数而非偶函数.
(1)写出f(x)在(a,+∞)上的单调性(不必证明);
(2)当x∈(r,a-3)时,f(x)的取值范围恰为(1,+∞),求a与r的值;
(3)设h(x)=$\sqrt{(x-2)g(x)}$-m(x+2)-2是否得在实数m使得函数y=h(x)有零点?若存在,求出实数m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:
性别与看营养说明列联表单位:名
总计
看营养说明50y80
不看营养说明x2030
总计6050z
(1)根据以上表格,写出x,y,z的值.
(2)根据以上列联表,是否有99%以上的把握认为“性别与在购买食物时看营养说明”有关?参考信息如下:
p(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+d)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数g(x)=(a+1)x-2+1(a>0)的图象恒过定点A,且点A又在函数f(x)=log3(x+a)的图象上.则实数a=7.

查看答案和解析>>

同步练习册答案