精英家教网 > 高中数学 > 题目详情
16.已知{an}为等差数列,a1+a3=2,则a2等于(  )
A.-1B.1C.3D.7

分析 利用等差数列的性质可得:a2=$\frac{{a}_{1}+{a}_{3}}{2}$,即可得出.

解答 解:∵{an}为等差数列,a1+a3=2,
则a2=$\frac{{a}_{1}+{a}_{3}}{2}$=1.
故选:B.

点评 本题考查了等差数列的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.求证:椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$与曲线$\frac{x^2}{25-k}+\frac{y^2}{9-k}=1$(k<25且k≠9)有相同的焦点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}为等比数列,a1=3,a4=81,若数列{bn}满足bn=(n+1)log3an,则{$\frac{1}{{b}_{n}}$}的前n项和Sn=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在正方体ABCD-A1B1C1D1中,点E,F分别是上底面A1B1C1D1和侧面CDD1C1的中心.
(1)求cos∠EAF;
(2)求直线AE与平面CDD1C1所成角的正弦值;
(3)求直线AF与平面BDD1B1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=max{|x+1|,|x-3|}的最小值(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.行列式$\left|\begin{array}{l}cos20°\\ sin20°\end{array}\right.\left.\begin{array}{l}sin40°\\ cos40°\end{array}\right|$的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.行列式$|{\begin{array}{l}a&b\\ c&d\end{array}}|$(a、b、c、d∈{-1,1,2})所有可能的值中,最小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$(t为参数),C2:$\left\{\begin{array}{l}{x=6cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数);
(1)C1,C2的方程为普通方程,并说明它们分别表示什么曲线?
(2)若C1上的点P对应的参数t=$\frac{π}{2}$,Q为C2上的动点,求PQ中点M到直线C3:$\left\{\begin{array}{l}{x=-3\sqrt{3}+\sqrt{3}t}\\{y=-3-t}\end{array}\right.$(t为参数)距离的最小值;
(3)若Q为曲线C2上的动点,求Q到直线C3距离的最小值和最大值;
(4)已知点P(x,y)是曲线C1上的动点,求2x+y的取值范围;
(5)若x+y+a≥0恒成立,(x,y)在曲线C1上,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正方体ABCD-A1B1C1D1的一个面A1B1C1D1在半径为$\sqrt{3}$的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD-A1B1C1D1的体积为2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案