精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,“cosA>cosB”是“sinA<sinB”的 (  )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件

【答案】C
【解析】解:充分性:在△ABC中,“cosA>cosB”,由余弦函数在(0,π)是减函数,故有A<B,
若B不是钝角,显然有“sinA<sinB”成立,
若B是钝角,因为A+B<π,故有A<π﹣B< , 故有sinA<sin(π﹣B)=sinB
综上,“cosA>cosB”可以推出“sinA<sinB”
必要性:由“sinA<sinB”
若B是钝角,在△ABC中,显然有0<A<B<π,可得,“cosA>cosB”
若B不是钝角,显然有0<A<B< , 此时也有cosA>cosB
综上,“sinA<sinB”推出“cosA>cosB”成立
故,“cosA>cosB”是“sinA<sinB”的充要条件
故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆和点.

(1)若点是圆上任意一点,求

(2)过圆 上任意一点 与点的直线,交圆于另一点,连接,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,如左下图.假定在水流量稳定的情况下,半径为3m的筒车上的每一个盛水桶都按逆时针方向作角速度为rad/min的匀速圆周运动,平面示意图如右下图,己知筒车中心O到水面BC的距离为2m,初始时刻其中一个盛水筒位于点P0处,且∠P0OAOA//BC),则8min后该盛水筒到水面的距离为____m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市从高二年级随机选取1000名学生,统计他们选修物理、化学、生物、政治、历史和地理六门课程(前3门为理科课程,后3门为文科课程)的情况,得到如下统计表,其中“√”表示选课,空白表示未选.

科目

方案 人数

物理

化学

生物

政治

历史

地理

220

200

180

175

135

90

(Ⅰ)在这1000名学生中,从选修物理的学生中随机选取1人,求该学生选修政治的概率;

(Ⅱ)在这1000名学生中,从选择方案一、二、三的学生中各选取2名学生,如果在这6名学生中随机选取2名,求这2名学生除选修物理以外另外两门选课中有相同科目的概率;

(Ⅲ)利用表中数据估计该市选课偏文(即选修至少两门文科课程)的学生人数多还是偏理(即选修至少两门理科课程)的学生人数多,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三个内角的度数可以构成等差数列”是“中有一个内角为”的(  )

A. 充分不必要条件B. 必要不充分条件

C. 充要条件D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小威初三参加某高中学校的数学自主招生考试,这次考试由十道选择题组成,得分要求是:做对一道题得1分,做错一道题扣去1分,不做得0分,总得分7分就算及格,小威的目标是至少得7分获得及格,在这次考试中,小威确定他做的前六题全对,记6分,而他做余下的四道题中,每道题做对的概率均为p考试中,小威思量:从余下的四道题中再做一题并且及格的概率从余下的四道题中恰做两道并且及格的概率他发现只做一道更容易及格.

(1)设小威从余下的四道题中恰做三道并且及格的概率为,从余下的四道题中全做并且及格的概率为

(2)由于p的大小影响,请你帮小威讨论:小威从余下的四道题中恰做几道并且及格的概率最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的图像在点处的切线方程;

(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2sin(2x﹣)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,则b的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二数学期中测试中为了了解学生的考试情况从中抽取了个学生的成绩(满分为100分)进行统计.按照[50,60), [60,70), [70,80), [80,90), [90,100]的分组作出频率分布直方图并作出样本分数的茎叶图(图中仅列出得分在[50,60), [90,100]的数据.

(1)求样本容量和频率分布直方图中的值

(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率。.

查看答案和解析>>

同步练习册答案