精英家教网 > 高中数学 > 题目详情

【题目】在明朝程大位《算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌.“远看巍巍塔七层,红光点点倍加倍;共灯三百八十一,请问尖头几盏灯?”本题是说,“远处有一座雄伟的佛塔,塔上挂满了许多红灯,下一层灯数是上一层灯数的2倍,全塔共有381盏,试问顶层有几盏灯?”;同样在这本书中还有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”如果译成白话文,其意思是:“有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完.”现按照分层抽样的办法从这100名和尚中选取12人派去布置第一个问题中最顶层的灯,那么每盏灯需要分派的大小和尚数各为(A)1人,3人 (B)2人,4人 (C)3人,6人 (D)3人,9人

【答案】A

解析】在第一个问题中,由题意得从顶层开始每一层灯的数量组成一个公比为2的等比数列设为,且其前7项和,由等比数列前项和公式解得,也就是说最顶层有3盏灯;在第二个问题中,100个和尚中,小和尚的数量应为大和尚的3倍,所以选取的12人中应有大和尚3人小和尚9人,所以塔最顶层所需布置的三盏灯的分配应该是每盏灯需大和尚1人小和尚3人.故选A.

【命题意图】本题主要考查等比数列、分层抽样的知识,考查基本的运算能力以及学生对数学文化的了解,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知不等式对任意实数恒成立.

(Ⅰ)求实数的最小值

(Ⅱ)若,且满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

平面直角坐标系中,直线的参数方程为为参数),曲线的普通方程为以坐标原点为极点,的正半轴为极轴建立极坐标系.

I)求直线的极坐标方程与曲线的参数方程;

II设点D在曲线上,曲线D处的切线与直线垂直,确定D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且离心率为.

(1)求椭圆的方程;

(2)设点轴上的射影为点,过点的直线与椭圆相交于 两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对数列{an}前n项和为Sn , an>0(n=1,2,…),a1=a2=1,且对n≥2有(a1+a2+…+an)an=(a1+a2+…+an1)an+1 , 则S1S2+S2S3+S3S4+…+Sn1Sn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kx+log9(9x+1)(k∈R)是偶函数.
(1)求k的值;
(2)若函数g(x)=log9(a3x a)的图象与f(x)的图象有且只有一个公共点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下列联表:

(1)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为,试求随机变量的分布列和数学期望;

(2)若在犯错误的概率不超过的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.附:独立性检验统计量,其中.

独立性检验临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)过点且斜率大于0的直线与椭圆相交于点 ,直线 轴相交于 两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,an+1 =1,记Sn=a12+a22+…+an2 , 若S2n+1﹣Sn 对任意n∈N*恒成立,则正整数m的最小值是

查看答案和解析>>

同步练习册答案