分析 (1)由条件解得cosα=1-2sinα,利用同角三角函数的基本关系求出sinα和cosα的值,从而求得tanα的值.
(2)利用诱导公式化简后,根据(1)即可代入求值.
解答 解:∵已知2sinα+cosα=1,解得:cosα=1-2sinα,
∵sin2α+cos2α=1,可得:sin2α+(1-2sinα)2=1,整理可得:5sin2α=4sinα,
∵α为三角形内角,sinα≠0,
∴解得:sinα=$\frac{4}{5}$,∴cosα=1-2sinα=-$\frac{3}{5}$,tan$α=\frac{sinα}{cosα}$=-$\frac{4}{3}$.
(2)sin2(π+α)-cos($\frac{π}{2}$+α)cos(π-α)=sin2α-(-sinα)(-cosα)=($\frac{4}{5}$)2-$\frac{4}{5}$×(-$\frac{3}{5}$)=$\frac{28}{25}$.
点评 本题主要考查利用同角三角函数的基本关系进行化简求值,考查了诱导公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [0,1] | B. | [0,$\frac{3}{2}$] | C. | (0,1) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{3π}{4}$ | D. | $\frac{3π}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com