精英家教网 > 高中数学 > 题目详情
3.函数y=3${\;}^{-{x}^{2}+ax}$在[$\frac{1}{2}$,1]上单调递增,则a的取值范围为[2,+∞).

分析 由题意利用复合函数的单调性可得y=-x2+ax在[$\frac{1}{2}$,1]上单调递增,可得 $\frac{a}{2}$≥1,由此求得a的范围.

解答 解:∵函数y=3${\;}^{-{x}^{2}+ax}$在[$\frac{1}{2}$,1]上单调递增,∴y=-x2+ax在[$\frac{1}{2}$,1]上单调递增,
∴$\frac{a}{2}$≥1,即a≥2,
故答案为:[2,+∞).

点评 本题主要考查复合函数的单调性,二次函数、指数函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知MOD函数是一个求余函数,其格式为MOD(n,m),其结果为n除以m的余数,例如MOD(12,5)=2,下面是一个算法的程序框图,当输入的n为77时,则输出的结果为(  )
A.9B.5C.11D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点P在圆x2+y2-2x+4y+1=0上,点Q在不等式$\left\{\begin{array}{l}{x+y≥2}\\{0≤y≤1}\end{array}\right.$,表示的平面区域内,则线段PQ长的最小值是$\sqrt{5}-2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.小明同学早晨从家到学校上学,他需要乘坐520路公交车,已知小明到达车站的时间是随机的,该路公交车每15分钟来一趟,则小明在公交车站上等车时间少于10分钟的概率为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)由如表定义:
x25314
f(x)12345
若a0=4,an+1=f(an),n=0,1,2,…,则a2017值为(  )
A.1B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=Asin(ωx+ϕ)其中$A>0,ω>0,|ϕ|<\frac{π}{2}$,若函数的最小正周期为π,最大值为2,且过(0,1)点,
(1)求函数的解析式;
(2)求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知P为椭圆4x2+y2=4上的点,O为原点,则|OP|的取值范围是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.通过研究函数f(x)=2x4-10x2+2x-1在x∈R内的零点个数,进一步研究得函数g(x)=2xn+10x2-2x-1(n>3,n∈N且n为奇数)在x∈R内零点有3个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆心角为2弧度的扇形的周长为3,则此扇形的面积为$\frac{9}{16}$.

查看答案和解析>>

同步练习册答案